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Università di Modena and Reggio Emilia and CEPR

Marco
Dipartimento di Scienze Economiche
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Abstract

In this paper we study identification in dynamic factor models and argue that fac-
tor models are better suited than VARs to provide a structural representation of
the macroeconomy. Factor models distinguish measurement errors and other id-
iosyncratic disturbances from structural macroeconomic shocks. As a consequence,
the number of structural shocks is no longer equal to the number of variables in-
cluded in the information set. In practice, the number of structural shocks turns
out to be small, so that only a few restrictions are needed to reach identification.
Economic interpretation is then easier. On the other hand, with factor models we
can handle much larger information sets—virtually all existing macroeconomic in-
formation. This solves the problems of superior information and fundamentalness
and enables us to analyze the effects of the shocks on all macroeconomic variables.
In the empirical illustration we study a set of 89 US macroeconomic time series,
including the series analyzed in the seminal paper of King et al. (1991). We find
that the system of impulse response functions of these series is non-fundamental
and therefore cannot be estimated with a VAR. Moreover, unlike in King et al.
(1991), the impulse response functions of the permanent shock are monotonic and
therefore more credible if the permanent shock is interpreted as technical change.

JEL subject classification : E0, C1
Key words and phrases : Dynamic factor models, structural VARs, identification
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1 Introduction

Structural VARs and related models like the Structural ECM have become the basic
analytical framework for a large part of modern Macroeconomics. Macroeconomic vari-
ables are represented as driven by serially uncorrelated shocks, each having a different
source or nature, like ”demand”, ”supply”, ”technology”, ”monetary policy” and so
on. Each variable reacts to a particular shock with a specific sign, intensity and lag
structure, summarized by the so called ”impulse-response function”. Such response
functions can be recovered by imposing suitable identifying restrictions. Implications
of economic theory not used for identification can then be compared with estimation
results and tested.

In the recent literature, some important shortcomings of this successful research
paradigm have been highlighted. A partial list includes Hansen and Sargent, 1991,
Lippi and Reichlin, 1993, 1994, Faust 1998, Leeper, Sims and Zha 1996, Christiano,
Eichenbaum and Evans, 1999, Cochrane, 1998, Rudebush, 1998, Sims, 1998, Uhlig,
1999. For a review see Stock and Watson, 2001. Major problems are: (i) the fun-
damentalness assumption, which is needed for identification, is essentially arbitrary,
particularly for small VARs; (ii) results are very sensitive to the choice of the variables
to include in the system; (iii) the identifying restriction are often arbitrary, particularly
in large systems. Let us briefly illustrate these points in turn.

First, in standard VAR literature identification is achieved by implicitly assuming
that the shocks and the related impulse response functions are “fundamental”, i.e. that
they are innovations with respect to the variables used in estimation. This assumption
has weak economic motivations. An important argument against the fundamentalness
assumption is that economic agents might use superior information with respect to the
one used by the econometrician in the VAR. Small VARs are particularly subject to
this criticism. The fundamentalness problem is well known in the literature (Lippi and
Reichlin 1993, 1994) but has been largely ignored for the simple reason that there is no
solution within the VAR approach. The only thing we can do with fundamentalness is
to cross fingers and bet on it.

Second, the choice of the variables. Clearly, some variables must be included in
the data set simply because they are the variables of interest for the problem at hand.
However, further variables are often added with the motivation that they are related in
some way to the variables of interest. Such variables, by enlarging the information set,
may mitigate the problem of fundamentalness. However, the number and the nature of
such variables is largely discretionary, and empirical results are not robust with respect
to different choices.

Third, given the variables to include in the system, the identification scheme is
often incredible, particularly for large systems. The number of equality restrictions to
impose for a complete identification grows with the square of the number of variables.
With 4 variables we have to impose 6 restrictions; with 5 variables we have to impose
10; with 6 variables, 15. As a consequence, when we have more than 3 or 4 variables,
the economic theory can hardly provide enough restrictions to achieve identification,
let alone testable implications. Even if we limit ourselves to triangular identification
schemes, we have many different orderings, and the choice between them is not obvious
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at all. As a consequence, we often end up with restrictions which are difficult to
interpret, and the relation between such restrictions and the labels attached to the
shocks—“supply”, “demand”, etc.—are weak and questionable. The fact that adding
variables renders identification more difficult is somewhat paradoxical, since intuition
suggests that adding information should help identification rather than complicate it.

In this paper we explore the identification issue within a different class of models,
including both the classical dynamic factor model or index model (Sargent and Sims,
1977, Geweke, 1977) and the generalization recently proposed by Forni et al. (2000).

So far, dynamic factor models have mainly been used as statistical tools, aimed at
prediction or construction of economic indicators, rather than structural representation
of economic relations. This is somewhat surprising, since such models are well suited
for structural analysis.

The representation of macroeconomic variables emerging from dynamic factor mod-
els is very similar to that of Structural VARs. The basic difference is that we have two
kinds of shocks instead of only one: the common or macroeconomic shocks, affecting
all of the variables in the system, which play the same role as the shocks in struc-
tural VARs, and the idiosyncratic shocks, affecting exclusively, or almost exclusively,
a specific variable. Within a macroeconomic context, such shocks must be interpreted
essentially as measurement errors and short-run disturbances.

Macroeconomists wondering whether explicit modelling of measurement errors is
really useful should remind that many macroeconomic variables such as the GDP are
estimated, rather than merely observed or “measured”, so that “measurement error” is
indeed a euphemism for “estimation error”. Moreover, there can be sources of variation
which are not errors but nonetheless affect only a single variable or a small group
of variables. As an example, think of short-run fluctuations of financial variables or
exchange rates, which are not sufficiently long-lasting to pervade other portions of the
economic activity.

The distinction between the true structural macroeconomic shocks, on one hand,
and the noise generated by errors and disturbances, on the other hand, has the impor-
tant consequence that the number of macroeconomic shocks is no longer constrained
to be equal to the number of variables that we choose to analyze, a feature of SVARs
which we find rather unpleasant. Within the factor model framework we can ask how
many shocks are there in the macroeconomy, an interesting question which does not
even make sense within the VAR framework.

But the crucial point is that typically the number of common shocks will be much
smaller than the number of variables in the system, so that the relation between the
amount of empirical data which can be handled by the model and the amount of
information needed to achieve identification changes dramatically.

VARs cannot be very large, since with more than 10 or 15 variables the number
of parameters to estimate is too large as compared with the number of time observa-
tion which are typical in empirical macroeconomics. By contrast, with factor models
we can accommodate hundred of variables: virtually, we can manage all the existing
macroeconomic information.

Of course, the choice of the data set is still important, but results are typically much
more robust to the inclusion of an additional variable or a small group of variables in
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the data set. Moreover, we are enabled to study the effect of a shock upon many
aggregate and disaggregate economic variables. Finally, as we shall see, the inclusion of
a large number of time series enables us to estimate non-fundamental impulse response
functions.

In factor models, unlike in structural VARs, when adding a variable the number of
structural shocks does not change. As we shall see, a very small number of common
shocks—just three—can provide a good representation of macroeconomic data. As a
consequence, the number of restrictions which are needed to achieve identification is also
small and the interpretation of the identifying restrictions and the shocks themselves
is easier.

The paper is structured as follows. In Section 2, we present the moving-average
factor model to which we refer in the sequel. In Section 3 we study the identification
issue in the context of dynamic factor models and compare identification in factor and
VAR models. We show that in both models, under the assumption of fundamentalness,
the impulse-response functions and the structural shocks are identified up to static
orthonormal rotations. Moreover, we discuss the severity of the fundamentalness re-
striction within the two theoretical frameworks and conclude that fundamentalness is
much more acceptable within the factor model approach. In Section 4 we propose a
method to estimate the impulse response functions and show consistency of the pro-
posed estimator as both the time and the cross-sectional dimensions go to infinity. In
Section 5 we provide an empirical illustration using a panel of 89 US quarterly macroe-
conomic series, specifically constructed to compare results with the three-variable model
of King et al. (1991). We choose a three common shock specification and identify a per-
manent shock by imposing long-run neutrality of the other shocks on output. We find
that (i) the three-dimensional sub-system of impulse response functions concerning the
variables of King et al. (1991) is non-fundamental and therefore cannot be estimated
with a VAR model; (ii) the impulse response functions are simple positive distributed
lags and therefore do not have the implausible negative slope after two years found in
King et al. (1991); (iii) the conclusion of King et al. (1991) that “US data are not
consistent with the view that a single real permanent shock is the dominant source of
business cycle fluctuations” is confirmed.

2 The Model

In this paper we refer to the following moving average dynamic factor model, which is a
special case of the generalized dynamic factor model of Forni et al. (2000) and Forni and
Lippi (2001). Such model, and the one used here, differs from the traditional dynamic
factor model of Sargent and Sims (1977) and Geweke (1977), in that the number of
cross-sectional variables is infinite and the idiosyncratic components are allowed to
be mutually correlated to some extent, along the lines of Chamberlain (1983) and
Chamberlain and Rothschild (1983). Similar models have been recently proposed by
Stock and Watson (1998, 2002a, 2002b) and Bai and Ng (2002).

Denote by xxxT
n = (xit)i=1,...,n; t=1,...,T an n×T rectangular array of observations. We

make two preliminary assumptions:
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PA1. XXXT
n is a finite realization of a real-valued stochastic process

XXX = {xit, i ∈ N, t ∈ Z , xit ∈ L2(Ω,F , P )}

indexed by N×Z, where the n-dimensional vector processes {xxxnt = (x1t · · · xnt)′, t ∈
Z}, n ∈ N are stationary, with zero mean and finite second-order moments
ΓΓΓnk = E[xxxntxxx

′
n,t−k ], k ∈ N.

PA2. For all n ∈ N, the process {xxxnt, t ∈ Z} admits a Wold representation xxxnt =∑∞
k=0 Cn

k wwwn,t−k, where the full-rank innovations wwwnt have finite moments of order
four, and the matrices Cn

k = (Cn
ij,k) satisfy

∑∞
k=0 |Cn

ij,k| < ∞ for all n, i, j ∈ N.

We assume that the process xit is the sum of two unobservable components, the
common component χit and the idiosyncratic component ξit. The common component
is driven by a q-dimensional vector of common shocks uuut = (u1t u2t · · · uqt)′, which are
loaded with possibly different coefficients and lags:

xit = χit + ξit = bi1(L)u1t + bi2(L)u2t + · · ·+ biq(L)uqt + ξit.

Note that q is independent of n (and small as compared to n in empirical applications).
More precisely:

FM0. Defining χχχnt = (χ1t . . . χnt)′ and ξξξnt = (ξ1t . . . ξnt)′, and Bn(L) as the matrix
whose (i, j) entry is bij(L), we have

xxxnt = χχχnt + ξξξnt

= Bn(L)uuut + ξξξnt,
(2.1)

where uuut is an orthonormal white noise vector and Bn(L) = Bn
0 +Bn

1 L+. . .+Bn
s Ls

is a n×q polynomial of order s in the lag operator L. The matrices Bn
j are nested

as n increases, and there is an m such that Bn
s 6= 0 for n > m.

FM1. the process uuut is orthogonal to ξit, i = 1, . . . , n, t ∈ Z.

Moreover, we make the following additional assumptions. Let Σχ
n(θ), Σξ

n(θ), θ∈ [−π, π],
be the spectral density matrices of χχχnt and ξξξnt, respectively, and λχ

nk, λξ
nk the corre-

sponding dynamic eigenvalues, namely, the mappings θ 7→ λχ
nk(θ) and θ 7→ λξ

nk(θ),
where λχ

nk(θ) and λξ
nk(θ) stand for the k-th largest eigenvalues of Σχ

n(θ) and Σξ
n(θ),

respectively. Finally, let Γχ
nk be the k-lag covariance matrix of χχχnt and µ

χ
nj the j-th

eigenvalue of ΓΓΓχ
n0.

FM2. For some r, q ≤ r ≤ q(s + 1), µχ
nr(θ) → ∞ as n → ∞, θ-a.e. in [−π π];

FM3. There exists a real Λ such that λξ
n1(θ) ≤ Λ for any θ ∈ [−π π] and any n ∈ N;

FM4. λχ
nk(θ) > λχ

n,k+1(θ) θ-a.e. in [−π π], k = 1, . . . , q.
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Assumptions FM2 and FM3 are needed to guarantee identification of the common
and the idiosyncratic components (see Forni and Lippi, 2001). Note that condition
FM3 on the asymptotic behavior of λξ

nk(θ) includes the case in which the idiosyn-
cratic components are mutually orthogonal with an upper bound for the variances.
Mutual orthogonality is a standard, though highly unrealistic assumption in factor
models; condition FM3 relaxes such assumption by allowing for a limited amount of
cross-correlation among the idiosyncratic components. Assumptions PA2 and FM4
are technical and do not entail a severe loss of generality (see Forni et al., 2002b for
additional details).

It is easily seen that the moving average dynamic factor model above can be written
in a “static” form, with common “factors” which are loaded only contemporaneously.
Writing fff t for (uuu′

t uuu′
t−1 . . . uuu′

t−s)
′, we have

xxxnt = Bn(L)uuut + ξξξnt = Anfff t + ξξξnt (2.2)

with r = q(s + 1) “static” factors and An = (aaa′1 · · · aaa′n)′ = (Bn
0 Bn

1 · · · Bn
s ).

In the sequel, we shall use the term static factors to denote the r entries of fff t and
the term dynamic factors to mean the q entries of uuut. Hence for instance u1t and u1t−1

are two distinct static factors, but are different lags of the same dynamic factor.1

3 Identification

The results in this Sections hold both for the finite moving average factor model and the
more general model proposed by Forni et al. (2000) and Forni and Lippi (2001); more-
over, they can be trivially adapted to the traditional, finite n, dynamic factor model.
What is relevant for the discussion is only that the common and the idiosyncratic com-
ponents are uniquely characterized, whereas the particular set of assumptions ensuring
identification is not essential. Given identification of the common components, we dis-
cuss identification of the common shocks uht, h = 1, . . . , q and the impulse-response
functions bih(L), h = 1, . . . , q, i ∈ N. A short preliminary description of the identifica-
tion problem in Structural VAR models will be useful for comparison.

3.1 Structural VARs

Let χχχt = (χ1t · · · χqt)′ be a zero-mean, covariance-stationary, q-dimensional, regular.
Then χχχt admits the moving average triangular representation

χχχt = B(L)uuut (3.3)

where

(VAR0) B(L) =
∑∞

k=0 BkLk is a q × q matrix of one-sided square-summable linear filters
and uuut is as above a q-dimensional orthonormal white-noise vector process;

1The number of static factors is then the rank of the variance covariance matrix of the χit’s, while
the number of dynamic factors is the rank of the spectral density matrix of the χit’s.
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(VAR1) uuut is fundamental; i.e. uht, h = 1, . . . , q, belong to the linear space spanned by
the present and the past of χht, h = 1, . . . , q;

(VAR2) B(0) = B0 is lower triangular.

Such representation is called the Cholesky-Sims triangular representation and can be
easily obtained from the Wold representation by using the Cholesky factorization of
the covariance matrix of the Wold residuals. The triangular representation is unique,
i.e. if χχχt = C(L)vvvt with C(L) and vvvt fulfilling conditions VAR, then C(L) = B(L) and
vvvt = uuut. Both existence and uniqueness of the triangular representation are immediate
consequences of existence and uniqueness of the Wold representation.

Remark 1. Note that invertibility of B(L) entails VAR1, since if B(L)−1 exists, then
uuut = B(L)−1χχχt. On the other hand, invertibility is not necessary for fundamentalness.
For instance, if q = 1, χt = (1 − L)ut, ut is fundamental and VAR2 is fulfilled, but
the representation is not invertible. Similarly, if χχχt is the first difference of a vector
of cointegrated variables, then B(L), despite fulfilling VAR1, is not invertible since
detB(1) = 0.

We have infinitely many representations fulfilling conditions VAR0 and VAR1, but
not VAR2. It can be shown that if

χχχt = C(L)vvvt, (3.4)

where vvvt is orthonormal and fundamental, then (3.4) is identified up to a static rotation,
i.e. it is related to the triangular representation (3.3) by

C(L) = B(L)H (3.5)
vvvt = H ′uuut,

where H is an orthonormal matrix, i.e. HH ′ = I . This is a well-known statement (a
formal proof can be easily obtained along the lines of the Proposition in Section 3.3).
Identification, within the standard VAR approach, consists in choosing H such that
economically motivated restrictions on the matrix B(L)H are fulfilled. For instance,
identification can be achieved by maximizing or minimizing an objective function in-
volving B(L)H . But usually zero restrictions are imposed either on the impact effects
B(0)H or the long-run effects B(1)H or both. In this case we have to impose q(q−1)/2
restrictions (since orthonormality entails q(q + 1)/2 restrictions). Note that the trian-
gular representations corresponding to different orderings of the variables in χχχt can be
obtained by imposing zero restrictions on the impact effects B(0)H .

3.2 Fundamentalness

The fundamentalness assumption VAR1 is crucial because, if we do not require it,
the set of possible response functions increases enormously and identification become
hopeless (Lippi and Reichlin 1993, 1994). If representation

χχχt = D(L)wwwt (3.6)
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fulfills VAR0 but not VAR1, it is identified up to dynamic rotations, i.e. it is related
to the triangular representation by

D(L) = B(L)H(L) (3.7)
wwwt = H ′(F )uuut,

where H(L) is a Blaschke matrix filter, i.e. a one-sided, square-summable linear filter
such that H(e−iθ)H ′(eiθ) = I , θ-a.e. in [−π π].

Example 1. A simple example is

χt = (1 + bL)ut, |b| ≤ 1.

Here q = 1, so that the condition var(ut) = 1 is sufficient to identify the model.
However, consider a representation of the form

χt = d(L)wt = (1 + bL)
1 + hL

h(1 + h−1L)
wt,

where
wt =

1 + hF

h(1 + h−1F )
ut

and |h| > 1. Since |h−1| < 1, d(L) fulfills VAR3. Moreover, wt fulfills VAR0, since its
spectral density is

1
2π

1 + heiθ

1 + h−1eiθ

1 + he−iθ

1 + h−1e−iθ

1
h2

=
1
2π

for any θ ∈ [−π π]. However, wt is not contained in the information space spanned by
the present and the past of χt, because of the factor (1+hL), |h| > 1, in the numerator
of d(L). Hence wt is not fundamental, contrary to VAR1.

The basic argument in favor of fundamentalness is that it ensures that uuut is observ-
able. It can be argued that structural macroeconomic shocks should be observable by
economic agents, since otherwise they could not affect agents’ behavior and produce ef-
fects on the macroeconomy. Since the macroeconomic variables in χχχt−k are observable,
the fundamentalness assumption entails that uuut is observable as well. However, also
non-fundamental shocks can be observable, if agents have more information than that
used by the econometrician, i.e. the present and the past of χχχt alone (Quah 1990, Lippi
and Reichlin 1993). With reference to the example above, if agents would observe wt,
d(L)wt would be the correct representation. We shall come back to this point below.

The fundamentalness assumption is necessary also in structural dynamic factor
models. But we shall argue below that in the context of factor models fundamentalness
is not particularly restrictive and can be convincingly justified.

3.3 Structural factor models

Now let us go back to the dynamic factor model (2.1). We neglect the idiosyncratic
factors ξit and concentrate on the common factors χit, which are identified under As-
sumptions FM (see Section 2). We have in matrix notation

χχχnt = Bn(L)uuut. (3.8)
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with the equality holding for any n ∈ N . We need the additional fundamentalness
assumptions

(FM5) uuut is fundamental; i.e. uht, h = 1, . . . , q belong to the linear space spanned by the
present and the past of χit, i = 1, . . . ,∞.

Remark 2. It should be observed that, if r = q(s+1), the fundamentalness assumption
FM5 is already implied by FM2. Clearly FM2 entails that, for n sufficiently large, the
rank of Γχ

n = AnA′
n is equal to r, so that the rank of An is also r and an r × n matrix

R exists such that RAn = Ir. Hence Rχχχnt = fff t = (uuu′
t uuu′

t−1 . . . uuu′
t−s)′, i.e. the factors

can be generated as contemporaneous linear combinations of the χt’s.

The following proposition holds:

Proposition If
χχχnt = Cn(L)vvvt (3.9)

for any n ∈ N with the entries of Cn(L) fulfilling FM0 and vvvt fulfilling FM0 and FM5,
then representation (3.9) is related to representation (3.8) by

Cn(L) = Bn(L)H (3.10)
vvvt = H ′uuut,

where H is a q × q unitary matrix, i.e. HH ′ = Iq.

Proof. Projecting vvvt entry by entry on the linear space Ut spanned by the present and
the past of uht, h = 1, . . . , q we get

vvvt =
∞∑

k=0

Hkuuut−k + rrrt, (3.11)

where rrrt is orthogonal to uuut−k , k ≥ 0. Now consider that Ut and the space spanned
by present and past of the χit’s, call it Xt, are identical, because the entries of χχχt−k,
k ≤ 0, belong to Ut by equation (3.9), while the entries of uuut−k, k ≤ 0, belong to Xt

by Assumption FM5. The same is true for Xt and the space spanned by present and
past of the vht’s, call it Vt, so that Ut = Vt. Hence, by (3.11), rrrt = 0. Moreover, serial
non-correlation of the uht’s imply that

∑∞
k=1 Hkuuut−k must be the projection of vvvt on

Ut−1, which is zero because Ut−1 = Vt−1. It follows that vvvt = H0uuut. Orthonormality of
vvvt (Assumption FM0)implies that H0 is unitary. QED

In the context of the dynamic factor model, the fundamentalness assumption is not
particularly restrictive. To see this, consider the following sufficient condition.

(LI) For n sufficiently large, there is a left-inverse for Bn(L), i.e. a n × q one-sided
filter Cn(L) exists such that Cn(L)′Bn(L) = Iq.

Clearly if such a matrix exists, we have uuut = Cn(L)′χχχnt and FM5 holds. As we have
already seen in Remark 2, the same sufficient condition holds for SVAR models. The
basic difference is that here n can be much larger than q. With n large, invertibility
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becomes a mild condition. If a q × q invertible sub matrix of Bn(L) exists, then of
course Bn(L) is invertible. If it does not, the left inverse could still exists. Consider
the following example.

Example 2. Assume that q = 1 and that

χit = bi(1− diL)ut

with di > 1 for all i, so that there are no invertible sub matrices. Nonetheless, if di 6= dj :

bi(1− diL)bjdj − bj(1− djL)bidi

(dj − di)bibj
= 1.

Therefore we can set ch(L) = 0 for h 6= i, j;

ci(L) =
dj

(dj − di)bi
; cj(L) =

di

(dj − di)bj
.

The only case in which we have non-fundamentalness is when di = d for any i, so that

Bn(L) = Bn(0)(1− dL)

with |d| > 1.

Example 2 clearly shows that fundamentalness of the whole system (FM5) does
not imply fundamentalness (VAR1) of any q × q subsystem. Hence a non-fundamental
impulse response subsystem, which cannot be estimated with a VAR, can in principle be
identified and estimated within the factor model. As a matter of fact, in the empirical
application below we estimate a non-fundamental impulse response function system,
something which is impossible within the traditional approach.

Note also that the observability argument works differently for structural factor
models and structural VARs. If agents look at all the macroeconomic information,
they can observe (or, better, they can estimate consistently) the χit’s, and therefore
the uht’s. By contrast, if the econometrician takes just one macroeconomic variable,
as in the example above, or a small subset of macroeconomic variables, as is usually
done with SVARs, he does not have any guarantee that the structural impulse-response
functions are fundamental with respect to this reduced information set.

Remark 3. It should be observed that we can still induce non-fundamentalness by
means of dynamic Blaschke rotations. However, in the context of factor models, the
impulse matrix Bn(L) is n×q, with n large with respect to q. Hence, post multiplying by
the q × q Blaschke matrix H(L) like in equation (3.7) produces a plenty of restrictions
on the way in which each cross-sectional unit reacts to the common shocks. Such
kind of restrictions are hardly justified on theoretical grounds, and therefore should be
considered of zero probability for any specific data set.

4 Estimation

If we were able to estimate the static factors fff t = (uuu′
t uuu′

t−1 . . . uuu′
t−s)

′, we could estimate
the impulse-response function simply by regressing the x’s on such estimated factors.
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Unfortunately, we cannot estimate fff t, since it is identified only up to pre-multiplication
by a unitary matrix. The best we can do is to estimate the common-factor space, i.e. to
estimate an r-dimensional, orthonormal vector whose entries span the same linear space
as the entries of fff t. Such vector can be written as gggt = Gfff t, were G is a non-singular
matrix.

The static factor space can be consistently estimated by both the two-stage, gener-
alized principal component estimator proposed by Forni et al. (2002b) and the principal
component estimator proposed by Stock and Watson (2002a, 2002b). While Stock and
Watson’s principal component estimator is simpler, the two-stage estimator is more
efficient in a number of cases (Forni et al., 2002).2

To make things simple, the procedure proposed here is based on Stock and Watson’s
principal component estimator, i.e. we shall estimate the factor space by the first r

principal components of the panel xxxnt. Precisely, the estimated static factors will be

ĝggt = WT
n

′
xxxnt, (4.12)

where WT
n is the n × r matrix having on the columns the eigenvectors corresponding

to the first r largest eigenvalues of the sample variance-covariance matrix of xxxnt, say
ΓxT

n0 . We do not normalize the factors to have unit variance. The estimated variance-
covariance matrix of ĝggt is the diagonal matrix having on the diagonal the eigenvalues
ΓxT

n0 in descending order, ΛT
n = WT

n
′ΓxT

n0 WT
n . The corresponding estimate of the com-

mon components is obtained by regressing xxxnt on the estimated factors to get

χ̂χχnt = WT
n WT

n
′
xxxnt. (4.13)

Having an estimate of gggt, we have still to unveil the leading-lagging relations between
its entries, in order to find out the underlying dynamic factors (or, better, a unitary
transformation of such factors vvvt = Huuut, with HH ′ = Iq). As shown below, this can be
done in the moving average dynamic factor model by projecting gggt on its first lag. This
approach is also followed in Giannone et al. (2002). The introduction of this dynamic
dimension will produce not only an estimate of the impulse-response functions but
also a new estimate of the χ’s and a new estimate of the common (and idiosyncratic)
variance-covariance matrices. This approach is also used

4.1 Population formulas

Going back to equation (2.2), it is seen that, by definition,

fff t = Ffff t−1 + eeet,

where

F =




0 0
(q × sq) (q × q)

I 0
(sq × sq) (sq × q)




2Consistency of Stock and Watson’s estimator for the model discussed here is proven in Forni et
al. (2002b). For additional information on this topic see also Connor and Korajczyk (1988), Forni and
Lippi (1997, 2001), Forni and Reichlin (1996, 1998, 2001), Forni et al. (2000, 2001, 2002a, 2002b),
Stock and Watson (1998, 2002a, 2002b).
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and

eeet =




uuut

0
(sq × 1)


 ,

is orthogonal to fff t−1. It follows that any non-singular transformation of the common
factors gggt = Gfff t has the VAR(1) representation

gggt = GFG−1gggt−1 + εεεt = Dgggt−1 + εεεt. (4.14)

Note that
D = Γg

1 (Γg
0)

−1
, (4.15)

where Γg
h = E(gggtggg

′
t−h), and

var(εεεt) = Γg
0 − DΓg

0D
′. (4.16)

The residual εεεt can be written as

εεεt = Geeet = Gquuut =
(
GqH

′) Huuut = KMHuuut, (4.17)

where

(i) Gq is the r × q matrix formed by the first q columns of G;

(ii) M is the diagonal matrix having on the diagonal the square roots of the first q

largest eigenvalues of the variance-covariance matrix of εεεt, i.e. the matrix GqG
′
q =

Γg
0 − DΓg

0D
′, in descending order.

(iii) K is the r × q matrix whose columns are the eigenvectors corresponding to such
eigenvalues.

(iv) H is a q × q unitary matrix;

By inverting the VAR we get

gggt = (I − DL)−1KMHuuut.

On the other hand, going back to equation (2.2) it is seen than

χχχnt = Bn(L)uuut = Anfff t = AnG−1gggt = Qngggt, (4.18)

where
Qn = E(χχχntggg

′
t) = E(xxxntggg

′
t). (4.19)

Hence, we have

χχχnt = Bn(L)uuut

= Qn(I − DL)−1KMHuuut

= Qn(I + DL + D2L2 + · · ·)KMHuuut

= Qn(I + DL + D2L2 + · · ·+ DsLs)KMHuuut, (4.20)

where the last equality can be obtained by observing that χχχnt is orthogonal to uuut−k for
k > s.
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4.2 Estimators

By substituting ĝggt = WT
n xxxnt for gggt, it is quite natural to estimate Qn by ΓxT

n0 WT
n (see

equation (4.19)). Moreover, Γg
0, the variance-covariance matrix of gggt, can be estimated

by WT
n

′ΓxT
n0 WT

n = ΛT
n , and Γg

1 by WT
n
′ΓxT

n1 WT
n , so that, basing on equation (4.15),

we estimate D by DT
n = WT

n
′ΓxT

n1 WT
n ΛT

n
−1. Finally, to estimate the eigenvectors and

eigenvalues in K and M we estimate the variance-covariance matrix of εεεt by ΛT
n −

DT
n ΛT

nDT
n
′ (see equation (4.16)).

Summing up, in analogy with (4.20) we propose to estimate the impulse-response
functions by

BT
n (L) = QT

n

(
I + DT

n L + (DT
n )2L2 + · · ·+ (DT

n )sLs
)

KT
n MT

n H, (4.21)

where

(i) QT
n = ΓxT

n0 WT
n , where ΓxT

n0 is the sample variance-covariance matrix of xxxnt and WT
n

the n × r matrix having on the columns the eigenvectors corresponding to the
first r largest eigenvalues of ΓxT

n0 ;

(ii) DT
n = WT

n
′ΓxT

n1 WT
n , where ΓxT

n1 is the sample covariance matrix of xxxnt and xxxnt−1;

(iii) MT
n is the diagonal matrix having on the diagonal the square roots of the first q

largest eigenvalues of the the matrix ΛT
n − DT

n ΛT
nDT

n
′, in descending order;

(iv) KT
n is the r× q matrix whose columns are the eigenvectors corresponding to such

eigenvalues.

(v) H is a unitary matrix to be fixed by the identifying restrictions.

Moreover, equations (4.17) and (4.14) motivate estimation of uuut by

uuuT
t = H ′(MT

n )−1KT
n
′
εεεT
t (4.22)

εεεT
t = WT

n
′
xxxnt − DT

n WT
n

′
xxxnt−1,

where, to avoid confusion with n-dimensional vectors, we do not make explicit the
dependence of uuuT

t and εεεT
t on n.

Note that the rank of the variance-covariance matrix of εεεT
t will be r, not q. This

is because, with a finite n, the principal components still have a (possibly very small)
idiosyncratic term, which, when projecting on ĝggt−1, will enter the residuals. When
taking the first q (normalized) principal components of εεεT

t , we wash out such residual
idiosyncratic elements. Hence imposing a dynamic structure on the estimated factors
entails a new estimate of the factors themselves and the common components. Precisely,
we have

gggT
t = DT

ngggT
t−1 + KT

n KT
n
′
εεεT
t (4.23)

=
(
I + DT

n L + (DT
n )2L2 + · · ·+ (DT

n )sLs
)

KT
n MT

n HuuuT
t (4.24)

χχχT
nt = BT

n (L)uuuT
t (4.25)

= QT
n

(
I + DT

n L + (DT
n )2L2 + · · ·+ (DT

n )sLs
)

KT
n MT

n HuuuT
t .
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The idiosyncratic components can be estimated by ξξξT
nt = xxxnt − χχχT

nt.
Note also that, when r is overestimated, the principal components in excess are

mainly idiosyncratic, and the second ‘washing’ described above has a large effect. As
a consequence, the ‘corrected’ estimate χχχT

nt should be much less affected than χ̂χχnt by
overestimation of r, provided that q is not itself overestimated.

Finally, corresponding to the above formula for χχχT
nt, the variance-covariance matrix

of the common components can be estimated by

QT
n

(
CT

n + DT
n CT

n DT
n
′
+ (DT

n )2CT
n (DT

n )2
′
+ · · ·+ (DT

n )sCT
n (DT

n )s′
)

QT
n
′

(4.26)

where CT
n = KT

n (MT
n )2KT

n
′.

In order to render operative the above procedure we need to set values for r and
q. Unfortunately, there are no criteria in the literature to fix jointly q and r. Bai and
Ng (2002) propose some consistent criteria to determine r. As regards the number of
dynamic factors, we can follow a decision rule like that proposed in Forni et al. (2000)
i. e., we go on to add factors until the additional variance explained by the last factor
is less than a pre-specified fraction, say 5% or 10%, of total variance.

4.3 Consistency

Consistency of the estimator (4.22) and (4.21) for uuut and the impulse-response functions
respectively can be proved along the lines followed in Forni et al. (2002b), Section 5.
Here we limit ourselves to provide an outline of the proof.

(a) Note firstly that the matrices QT
n , DT

n , KT
n , MT

n , entering the definition of BT
n (L),

see (4.21), all depend on the matrices ΓxT
nk , their eigenvalues and eigenvectors. Un-

der the assumption of no multiple eigenvalues (see Forni et al., 2002b, for tech-
nical details), such matrices are therefore continuous functions of the coefficients
of ΓxT

nk .

(b) Given n, for T → ∞ the estimators ΓxT
nk converge in probability to their popula-

tion counterparts Γx
nk . Continuity implies that the matrices QT

n , DT
n , KT

n , MT
n ,

and the shocks uuuT
t , converge in probability to Q̌n, Ďn, Ǩn, M̌n, and the shocks ǔuut,

the latter being population matrices and shocks, where “population” here means
that dependence on T no longer holds, although these matrices and shocks still
depend on n.

(c) It may be proved that as n → ∞ the matrices Q̌n, Ďn, Ǩn, M̌n, and the shocks
ǔuut tend in variance to the population, with respect to both T and n, matrices and
shocks.

(d) Combining the asymptotics in T with the asymptotics in n, it is then proved
that there exist paths for (T, n), with T and n both tending to infinity, such that
along those paths the matrices QT

n , DT
n , KT

n , MT
n , and the shocks uuuT

t converge in
probability to their population counterpart. Under additional assumptions Forni
et al. (2002a) and Giannone et al. (2002) obtain convergence in probability to
population values for min(n, T ) → ∞. The results on the rate of convergence in
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Forni et al. (2002a) can easily be adapted to the model analysed in the present
paper.

(e) It should be pointed out that in the present paper estimation of the factors is based
on the eigenvectors of the variance-covariance matrix of the x’s, not, as in Forni
et al. (2000) or Forni et al. (2002b), on the eigenvectors of their spectral density
matrix. Therefore the proof of consistency outlined above could alternatively be
based, up to minor modifications of the assumptions, upon the methods used in
Stock and Watson (1998) or in Bai and Ng (2002).

4.4 Standard errors and confidence bands

To obtain confidence bands and standard errors we propose the following bootstrap
procedure.

First, compute BT
n (L) , uuuT

t and χχχT
t according to (4.21), (4.22) and (4.26), and

ξξξT
nt = xxxT

nt − χχχT
nt.

Second, for each one of the estimated idiosyncratic components, estimate the uni-
variate autoregressive models

aj(L)χT
jt = σjωjt, j = 1, . . . , n,

whose the order can be fixed by the Schwarz criterion, and take the estimated coeffi-
cients aT

j (L) and σT
j and the unit variance residuals ωT

jt.
Third, generate new simulated series for the shocks, say uuu∗

t and ω∗
jt, j = 1, . . . , n,

either by drawing from the standard normal or by resampling from uuuT
t and ωT

jt, t =
1, . . . , T . Use these new series to construct χχχ∗

nt = BT
n (L)uuu∗

t , ξ∗jt = aT
j (L)−1σT

j ω∗
jt,

j = 1, . . . , n, and xxx∗
nt = χχχ∗

nt + ξξξ∗nt.
Finally, compute new estimates of the impulse-response functions B∗

n(L) starting
from xxx∗

nt.
By repeating the two last steps N times we get a distribution of estimated values

which can be used to obtain standard errors and confidence bands. Note that the
estimates will in general be biased, since the estimation procedure involves implicitly
the estimation of a VAR. An estimate of such bias is provided by the difference between
the point estimate BT

n (L) and the average of the N estimates B∗
n(L).

5 Empirical application

We illustrate our proposed structural factor model by revisiting a seminal work in
the structural VAR literature, i.e. King et al. (1991, KPSW from now on). To
this end, we constructed a panel of macroeconomic series including the series used by
KPSW, with the same sampling period. Just like KPSW, we identify a long-run shock
by imposing long-run neutrality of all other shocks on per-capita output. The data
are well described by three common shocks, so that the comparison with the three-
variable exercise of KPSW is particularly appropriate. Having the same data, the same
identification scheme and the same number of shocks, different results can only be due
to the additional information coming from the other series in the panel.
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5.1 The data

The data set was constructed by downloading mainly from the FRED II database of
the Federal Reserve Bank of St. Louis and Datastream. The original data of KPSW
have been downloaded from Mark Watson’s home page. We collected 89 series, includ-
ing data from NIPA tables, price indeces, productivity, industrial production indeces,
interest rates, money, financial data, employment, labor costs, shipments, and survey
data. A larger n would be desirable, but we were constrained by both the scarcity of
series starting from 1949 (like in KPSW) and the need of balancing data of different
groups. In order to use Datastream series we were forced to start from 1950:1 instead
of 1949:1, so that the sampling period is 1950:1 - 1988:4. Monthly data are taken in
quarterly averages. All data have been transformed to reach stationarity according to
the ADF(4) test at the 5% level. Finally, the data were taken in deviation from the
mean as required by our formulas, and divided by the standard deviation to render
results independent of the units of measurement. A complete description of each series
and the related transformations is reported in the Appendix.

5.2 The choice of r and the number of common shocks

As a first step we have to set r and q. Let us begin by observing that in practice
satisfying the constraint r = (s + 1)q is not convenient. An obvious reason is that, if
q > 1, there could be shocks whose coefficients vanish after a lag smaller than s. More
generally, there can be restrictions between the parameters enabling us to describe the
impulse response functions more parsimoniously. As an example, consider the case
q = 1 where there are only three kinds of shapes for the impulse-response functions of
different cross-sectional units, say leading, lagging and coincident. In this case, r = 3 is
sufficient to describe conveniently the data set, no matter the value of s.3 As a matter
of fact, assuming a finite s is not really necessary. An example with a very small r

and infinite order response functions is the stylized equilibrium business cycle model
studied in Giannone et al. (2003).

If we allow for r < (s + 1)q, we can set r and q and let s be whatever. Let us
begin with r. We computed the six consistent criteria suggested by Bai and Ng (2002)
with r = 1, . . . , 30. The criteria ICp1 and ICp3 do not work, since they do not reach a
minimum for r < 30; ICp2 has a minimum for r = 12. To compute PCp1, PCp2 and
PCp3 we estimated σ̂2 with r = 15 since with r = 30 none of the criteria reaches a
minimum for r < 30. PCp1 gives r = 15, PCp2 gives r = 14 and PCp3 gives r = 20.
Hence we concentrated on the interval 12 ≤ r ≤ 20.

For these values of r, and 1 ≤ q ≤ 6, we used formula (4.26) to compute the variance
explained by the common component for our main series of interest, i.e. real per capita
output, and the whole system (Table 1). By adding the third shock the overall explained
variance increases by 8-9 percentage points and the explained variance of per capita
output by 4-8 per cent, as against the 4-5 per cent and 2-4 per cent respectively of the

3Notice however that if r is strictly smaller than (s+1)q we are no longer guaranteed that the static
factors follow a VAR of order one. Hence looking at the serial correlation of the VAR residuals can be
useful.
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Table 1: Percentage of variance explained by the common component

q = 1 q = 2 q = 3 q = 4 q = 5 q = 6
Average
r = 12 0.19 0.31 0.39 0.44 0.47 0.51
r = 14 0.19 0.30 0.38 0.43 0.46 0.51
r = 16 0.19 0.31 0.39 0.43 0.46 0.51
r = 18 0.18 0.30 0.38 0.43 0.47 0.51
r = 20 0.18 0.30 0.39 0.43 0.47 0.51
Per capita output
r = 12 0.31 0.47 0.53 0.55 0.56 0.59
r = 14 0.33 0.48 0.52 0.55 0.56 0.58
r = 16 0.33 0.48 0.53 0.55 0.57 0.58
r = 18 0.31 0.46 0.53 0.57 0.59 0.61
r = 20 0.31 0.46 0.54 0.56 0.59 0.60

fourth shock. As explained above, for the sake of comparison we start with a strong
preference in favor of q = 3. The numbers above are not at odds with this choice. It is
worth noting that Giannone et al. (2002) also set q = 3 with a larger data set referring
to a more recent period.

Regarding the choice of r, both the criteria above and the explained variances of
Table 1 do not provide a definite answer. However, as we shall see, results are quite
robust with respect to variation of r. Below we report results for different values of r,
with more detailed statistics for r = 15.

5.3 Fundamentalness

Now let us compute the roots of the determinant of the impulse-response function
system formed by the three variables of KPSW, i.e. per capita consumption, per capita
income and per capita investment.4 Figure 1 plots the moduli of the two smallest roots
of the above determinant as a function of r, for r varying over the range 3-30. Note
that for r = 3 all roots must be larger than one in modulus, since they stem from a
three-variate VAR. This is in fact the case for r = 3 and r = 4, but for r ≥ 5 the
smallest root is declining and lies always within the unit circle. For r ≥ 22 the second
smallest root becomes smaller than one in modulus.

Figure 2 reports the distribution of the modulus of the smallest root for r = 15 across
1000 bootstrapping replications. The mean value is 0.71, indicating a non-negligible
upward bias, since our point estimate for r = 15 is 0.54. We shall come back to the
estimation bias below. Here we limit ourselves to observe that if the smallest root is
overestimated on average, the true value could be even smaller than 0.54. Without any
bias correction, the probability of an estimated value larger than one in modulus is less
than 22%.

4Note that these roots (and therefore fundamentalness) are independent of the identification rule
adopted and the rotation matrix H.
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Figure 1: The moduli of the first and the second smallest roots as functions of r
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Figure 2: Frequency distribution of the modulus of the smallest root
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We conclude that the true impulse-response functions for the three variable sys-
tem of KPSW are probably non-fundamental and therefore cannot be estimated with
traditional VAR techniques.

5.4 Impulse-response functions and variance decomposition

Coming to the impulse-response functions, as anticipated above we impose long-run
neutrality of two shocks on per-capita output, like in KPSW. This is sufficient to reach
a partial identification, i.e. to identify the long-run shock and its response functions on
the three variables.

Figure 3 shows the response functions of per capita output for r = 12, 15, 18. The
general shape does not change that much with r. The productivity shock has posi-
tive effects declining with time on the output level. The response function reach its
maximum value after 6-8 quarters with only negligible effects after two years. This
shape is very different from the one in KPSW, where there is a sharp decline during
the second and the third year which drives the overall effect back to the impact value.
In our opinion such negative effects are not easily justified on theoretical grounds and
classical distributed lags like the ones of Figure 3 are more convincing.
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Figure 3: The impulse response function of the long-run shock on output for r =
12, 15, 18
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In Figure 4 we concentrate on the case r = 15. We report the response functions
with 90% confidence bands for output, consumption and investment respectively. Con-
fidence bands are obtained with the nonparametric procedure explained above (with
1000 replications). The shapes are similar for the three variables, with a positive impact
effect followed by important, though declining, positive lagged effects. Again, we do
not have the large negative lagged effects found by KPSW particularly for investment.

Note that confidence bands are not centered around the point estimate, especially
for consumption, suggesting the existence of a non-negligible bias. This is not surpris-
ing, since formula (4.21) implicitly involves estimation of a VAR, where in addition
the variable involved (the static factors) contain errors (a residual idiosyncratic term).
Figure 5 shows the point estimate along with the mean of the bootstrap distribution for
the output. Such a large bias is probably due to the small cross-sectional dimension.
We have evidence of a much smaller bias for the larger data set of Giannone et al.
(2002). We do not make any attempt here to correct for the bias, but a procedure like
the one suggested in Kilian (1998) could be appropriate.

Coming to variance decomposition, the percentage of the total variance of the com-
mon component attributable to the permanent shock is only 36.4% for output, 21.3%
for investment and 38.8% for consumption.

Table 2 reports the fraction of the forecast-error variance attributed to the perma-
nent shock for output, consumption and investment at different horizons. For ease of
comparison we report the corresponding numbers obtained with the (restricted) VAR
model and reported in Table 4 of KPSW.

At horizon 1, our estimates are smaller. The difference is important for consump-
tion: only 0.30 according to the factor model as against 0.88 according to the KPSW
model. But at horizons larger than or equal to 8 our estimates are greater and the
difference is very large for investment. The basic conclusions of KPSW, however, are
confirmed: “US data are not consistent with the view that a single real permanent
shock is the dominant source of business-cycle fluctuations” (KPSW, p.838).
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Figure 4: The impulse response function of the long-run shock on output, consump-
tion and investment for r = 15
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Figure 5: Estimation bias
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6 Conclusions

In this paper we have argued that dynamic factor models are suitable for structural
macroeconomic modeling and in some respects are preferable to structural VARs.

We have discussed identification within a dynamic factor model and have compared
identification conditions within the two classes of models. In particular, we have argued
that the usual fundamentalness assumption, which is necessary in both frameworks, is
much less restrictive within the factor model context and can be better justified on
economic grounds.

Having established sufficient conditions for identification, we have suggested a pro-
cedure in order to estimate the impulse response functions, based on Stock and Wat-
son’s principal component estimation of the (static) factor space. Moreover, we have
shown consistency of such a procedure and have suggested a bootstrapping procedure
for confidence bands and inference purposes.

In the empirical application, we have revisited the seminal paper by King et al.
(1991, KPSW). We have designed a data set including the data of KPSW, with the same
sample period. For the sake of comparison, we have chosen a three-shock specification
and have imposed the same identification scheme as in KPSW.

First, we have found that the smallest root of the determinant of the impulse-
response function system formed by the three variables of KPSW is non-fundamental
and therefore cannot be obtained by estimating a VAR. This result is robust with
respect to the choice of the static rank r.

Second, the shapes of the impulse-response functions of the long-run shock on out-
put, investment and consumption are cumulated sums of simple positive distributed
lags, and do not present the strange negative slope after the fourth quarter found by
KPSW.

Third, the fraction of variance explained by the permanent shock is smaller in the
very short run, particularly for consumption and larger after two years, particularly
for investment. However, the basic conclusions of KPSW concerning the role of the
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Table 2: Fraction of the forecast-error variance due to the long-run shock

Dynamic factor model KPSW vector ECM

Horizon Output Cons. Inv. Output Cons. Inv.
1 0.37 0.30 0.07 0.45 0.88 0.12

(0.18) (0.21) (0.19) (0.28) (0.21) (0.18)

4 0.57 0.77 0.42 0.58 0.89 0.31
(0.12) (0.12) (0.19) (0.27) (0.19) (0.23)

8 0.78 0.87 0.72 0.68 0.83 0.40
(0.07) (0.11) (0.16) (0.22) (0.18) (0.18)

12 0.86 0.90 0.80 0.73 0.83 0.43
(0.05) (0.11) (0.16) (0.19) (0.18) (0.17)

16 0.89 0.91 0.83 0.77 0.85 0.44
(0.04) (0.11) (0.16) (0.17) (0.16) (0.16)

20 0.91 0.92 0.86 0.79 0.87 0.46
(0.03) (0.11) (0.16) (0.16) (0.15) (0.16)

permanent shock in explaining the short-run volatility of output remain unchanged.
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Appendix: Data description and data treatment

Original Variable ID Code in Orig. Seas.
Database Source Description the Database Units Freq. Adj. Treatment

1 MW Citibase Per Capita Real Consumption Expenditure DLOG
2 MW Citibase Per Capita Gross Private Domestic Fixed Investment DLOG
3 MW Citibase Per Capita Private Gross National product DLOG
4 MW Citibase Per Capita Real M2 (M2 divided by P) DLOG
5 MW Citibase 3-Month Treasury Bill Rate D
6 MW Citibase Implicit Price Deflator for Private GNP DDLOG
7 Fred II BEA Real Gross Domestic Product, 1 Decimal GDPC1 Bil. of Ch. 1996 $ Q YES DLOG
8 Fred II BEA Real Final Sales of Domestic Product, 1 Decimal FINSLC1 Bil. of Ch. 1996 $ Q YES DLOG
9 Fred II BEA Real Gross Private Domestic Investment, 1 Decimal GPDIC1 Bil. of Ch. 1996 $ Q YES DLOG

10 Fred II BEA Real State & Local Cons. Expend. & Gross Inv., 1 Dec. SLCEC1 Bil. of Ch. 1996 $ Q YES DLOG
11 Fred II BEA Real Private Residential Fixed Investment, 1 Dec. PRFIC1 Bil. of Ch. 1996 $ Q YES DLOG
12 Fred II BEA Real Private Nonresidential Fixed Investment, 1 Dec. PNFIC1 Bil. of Ch. 1996 $ Q YES DLOG
13 Fred II BEA Real Nonresidential Inv.: Equipment & Software, 1 Dec. NRIPDC1 Bil. of Ch. 1996 $ Q YES DLOG
14 Fred II BEA Real Imports of Goods & Services, 1 Decimal IMPGSC1 Bil. of Ch. 1996 $ Q YES DLOG
15 Fred II BEA Real Federal Cons. Expend. & Gross Investment, 1 Dec. FGCEC1 Bil. of Ch. 1996 $ Q YES DLOG
16 Fred II BEA Real Government Cons. Expend. & Gross Inv., 1 Dec. GCEC1 Bil. of Ch. 1996 $ Q YES DLOG
17 Fred II BEA Real Fixed Private Domestic Investment, 1 Decimal FPIC1 Bil. of Ch. 1996 $ Q YES DLOG
18 Fred II BEA Real Exports of Goods & Services, 1 Decimal EXPGSC1 Bil. of Ch. 1996 $ Q YES DLOG
19 Fred II BEA Real Change in Private Inventories, 1 Decimal CBIC1 Bil. of Ch. 1996 $ Q YES NONE
20 Fred II BEA Real Personal Cons. Expenditures: Nondurable Goods PCNDGC96 Bil. of Ch. 1996 $ Q YES DLOG
21 Fred II BEA Real State & Local Government: Gross Investment SLINVC96 Bil. of Ch. 1996 $ Q YES DLOG
22 Fred II BEA Real Personal Consumption Expenditures: Services PCESVC96 Bil. of Ch. 1996 $ Q YES DLOG
23 Fred II BEA Real Personal Cons. Expenditures: Durable Goods PCDGCC96 Bil. of Ch. 1996 $ Q YES DLOG
24 Fred II BEA Real Personal Consumption Expenditures PCECC96 Bil. of Ch. 1996 $ Q YES DLOG
25 Fred II BEA Real National Defense Gross Investment DGIC96 Bil. of Ch. 1996 $ Q YES DLOG
26 Fred II BEA Real Federal Nondefense Gross Investment NDGIC96 Bil. of Ch. 1996 $ Q YES DLOG
27 Fred II BEA Real Disposable Personal Income DPIC96 Bil. of Ch. 1996 $ Q YES DLOG
28 Fred II BEA Personal Cons. Expenditures: Chain-type Price Index PCECTPI Index 1996 = 100 Q YES DDLOG
29 Fred II BEA Gross Domestic Product: Chain-type Price Index GDPCTPI Index 1996 = 100 Q YES DDLOG
30 Fred II BEA Gross Domestic Product: Implicit Price Deflator GDPDEF Index 1996 = 100 Q YES DDLOG
31 Fred II BEA Gross National Product: Implicit Price Deflator GNPDEF Index 1996 = 100 Q YES DDLOG
32 Fred II BEA Gross National Product: Chain-type Price Index GNPCTPI Index 1996 = 100 Q YES DDLOG
33 Fred II BLS Nonfarm Business Sector: Unit Labor Cost ULCNFB Index 1996 = 100 Q YES DLOG
34 Fred II BLS Nonfarm Business Sector: Real Compensation Per Hour COMPRNFB Index 1992 = 100 Q YES DLOG
35 Fred II BLS Nonfarm Bus. Sector: Output Per Hour of All Persons OPHNFB Index 1992 = 100 Q YES DLOG
36 Fred II BLS Nonfarm Business Sector: Compensation Per Hour COMPNFB Index 1992 = 100 Q YES DLOG
37 Fred II BLS Manufacturing Sector: Unit Labor Cost ULCMFG Index 1992 = 100 Q YES DLOG
38 Fred II BLS Manufacturing Sector: Output Per Hour of All Persons OPHMFG Index 1992 = 100 Q YES DLOG
39 Fred II BLS Business Sector: Output Per Hour of All Persons OPHPBS Index 1992 = 100 Q YES DLOG
40 Fred II BLS Business Sector: Compensation Per Hour HCOMPBS Index 1992 = 100 Q YES DLOG
41 Fred II St. Louis St. Louis Adjusted Reserves ADJRESSL Bil. of $ M YES DLOG
42 Fred II St. Louis St. Louis Adjusted Monetary Base AMBSL Bil. of $ M YES DLOG
43 Fred II Moody’s Moody’s Seasoned Aaa Corporate Bond Yield AAA % M NO D
44 Fred II Moody’s Moody’s Seasoned Baa Corporate Bond Yield BAA % M NO D
45 Fred II FR Bank Prime Loan Rate MPRIME % M NO D
46 Fred II FR 3-Month Treasury Bill: Secondary Market Rate TB3MS % M NO D
47 Fred II FR Currency in Circulation CURRCIR Bil. of $ M NO DD4LOG
48 Fred II FR Currency Component of M1 CURRSL Bil. of $ M YES DDLOG
49 Fred II BLS CPI for All Urban Consumers: All Items Less Food CPIULFSL Ind. 1982-84 = 100 M YES DDLOG
50 Fred II BLS Consumer Price Index for All Urban Consumers: Food CPIUFDSL Ind. 1982-84 = 100 M YES DDLOG
51 Fred II BLS CPI For All Urban Consumers: All Items CPIAUCSL Ind. 1982-84 = 100 M YES DDLOG
52 Fred II BLS CPI: Intermediate Materials: Supplies & Components PPIITM Index 1982 = 100 M YES DDLOG
53 Fred II BLS Producer Price Index: Industrial Commodities PPIIDC Index 1982 = 100 M NO DDLOG
54 Fred II BLS PPI: Fuels & Related Products & Power PPIENG Index 1982 = 100 M NO DDLOG
55 Fred II BLS PPI Finished Goods: Capital Equipment PPICPE Index 1982 = 100 M YES DDLOG
56 Fred II BLS Producer Price Index: Finished Goods PPIFGS Index 1982 = 100 M YES DDLOG
57 Fred II BLS Producer Price Index: Finished Consumer Goods PPIFCG Index 1982 = 100 M YES DDLOG
58 Fred II BLS Producer Price Index: Finished Consumer Foods PPIFCF Index 1982 = 100 M YES DDLOG
59 Fred II BLS PPI: Crude Materials for Further Processing PPICRM Index 1982 = 100 M YES DDLOG
60 Fred II BLS Producer Price Index: All Commodities PPIACO Index 1982 = 100 M NO DLOG
61 Fred II FR Commercial and Industrial Loans at All Comm. Banks BUSLOANS Bil. of $ M YES DLOG
62 Fred II FR Total Loans and Leases at Commercial Banks LOANS Bil. of $ M YES DLOG
63 Fred II FR Total Loans and Investments at All Commercial Banks LOANINV Bil. of $ M YES DLOG
64 Fred II FR Total Consumer Credit Outstanding TOTALSL Bil. of $ M YES DLOG
65 Fred II FR Real Estate Loans at All Commercial Banks REALLN Bil. of $ M YES DLOG
66 Fred II FR Other Securities at All Commercial Banks OTHSEC Bil. of $ M YES DLOG
67 Fred II FR Consumer (Individual) Loans at All Comm. Banks CONSUMER Bil. of $ M YES DLOG
68 Fred II BLS All Employees: Construction USCONS Thous. M YES DLOG
69 Fred II BLS Total Nonfarm Payrolls: All Employees PAYEMS Thous. M YES DLOG
70 Fred II BLS Employees on Nonfarm Payrolls: Manufacturing MANEMP Thous. M YES DLOG
71 Fred II BLS Unemployed: 16 Years & Over UNEMPLOY Thous. M YES DLOG
72 Fred II BLS Civilian Unemployment Rate UNRATE % M YES DLOG
73 Fred II BLS Civilian Participation Rate CIVPART % M YES DLOG
74 Fred II BLS Civilian Labor Force CLF16OV Thous. M YES DLOG
75 Fred II BLS Civilian Employment: Sixteen Years & Over CE16OV Thous. M YES DLOG
76 Fred II BLS Civilian Employment-Population Ratio EMRATIO % M YES DLOG
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Original Variable ID Code in Orig. Seas.
Database Source Description the Database Units Freq. Adj. Treatment

77 EconStats FR Industrial Production: total Index M YES DLOG
78 EconStats FR Industrial Production: Manufacturing (SIC-based) Index M YES DLOG
79 Datastream ISM ISM Manufacturers Survey: Supplier Delivery Index USNAPMDL Index M YES NONE
80 Datastream ISM Chicago Purchasing Manager Business Barometer USPMCUBB % M NO NONE
81 Datastream ISM ISM Manufacturers Survey: New Orders Index USNAPMNO Index M YES NONE
82 Datastream ISM ISM Manufacturers Survey: Employment Index USNAPMIV Index M YES NONE
83 Datastream ISM ISM Manufacturers Survey: Production Index USNAPMEM Index M YES NONE
84 Datastream ISM ISM Purchasing Managers Index (MFG Survey) USNAPMPR Index M YES NONE
85 Datastream BC Manufacturing Shipments - Total USMNSHIPB Bil. of $ M YES DLOG
86 Datastream BC Shipments of Durable Goods USSHDURGB Bil. of $ M YES DLOG
87 Datastream BC Shipments of Non-Durable Goods USSHNONDB Bil. of $ M YES DLOG
88 Datastream S&P Standard & Poor’s 500 (monthly average) US500STK Index M NO DLOG
89 Datastream FT Dow Jones Industrial Share Price Index USSHRPRCF Index M NO DLOG

Abbreviations:
MW: Mark Watson’s home page (http://www.wws.princeton.edu/ mwatson/publi.html)
Fred II: Fred II database of the Federal Reserve Bank of St. Louis
BEA: Bureau of Economic Analysis
BLS: Bureau of Labor Statistics
FR: Federal Reserve Board
St Louis: Federal Reserve Bank of St. Louis
ISM: Institute for Supply Management
BC: Bureau of Census
S&P: Standard & Poors’
FT: Financial Times
Q: Quarterly
M: Monthly (we take quarterly averages)

References

[1] Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models.
Econometrica 70, 191-221.

[2] Canova, F. (1995), VAR: specification, estimation, testing and forecasting, in Pesaran, H.
and M. Wickens, eds., Handbook of Applied Econometrics, 31-65.

[3] Brillinger D.R. (1981) Time Series Data Analysis and Theory, New York: Holt, Rinehart
and Winston.

[4] Chamberlain, G. (1983). Funds, factors, and diversification in arbitrage pricing models.
Econometrica 51, 1281-1304.

[5] Chamberlain, G. & M. Rothschild (1983). Arbitrage, factor structure and mean-variance
analysis in large asset markets. Econometrica 51, 1305-1324.

[6] Christiano, L. J., M. Eichenbaum, and C. L. Evans (1999). Monetary Policy Shocks: What
Have We Learned and to What End? In J. B. Taylor and M. Woodford, Eds., Handbook
of macroeconomics, North Holland, Amsterdam.

[7] Cochrane, J.H. (1998) What do the VARs mean? Measuring the output effects of monetary
policy. Journal of Monetary Economics 41, pp.277-300.

[8] Connor, G. and R.A. Korajczyk (1988) Risk and return in an equilibrium APT. Applica-
tion of a new test methodology. journal of Financial Economics 21, pp.255-89.

[9] Faust, J. (1998) The robustness of identified VAR conclusions about money. Carnegy-
Rochester Conference Series on Public Policy 49,pp.207-44.

[10] Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2000). The generalized dynamic factor
model: identification and estimation. The Review of Economics and Statistics 82, 540-554.

[11] Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2001). Coincident and leading indicators
for the Euro area. The Economic Journal 111, 62-85.

24



[12] Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2002a). The generalized dynamic factor
model: consistency and rates. Journal of Econometrics, to appear.

[13] Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2002b). The generalized factor model:
one-sided estimation and forecasting. CEPR Discussion Paper Series no. 3432.

[14] Forni, M. and M. Lippi (1997). Aggregation and the microeconomic foundations of dynamic
macroeconomics. Oxford: Clarendon press.

[15] Forni, M. and M. Lippi (2001) The generalized dynamic factor model: representation
theory. Econometric Theory 17, 1113-41.

[16] Forni M. and Reichlin L. (1996) Dynamic Common Factors in Large Cross-Sections. Em-
pirical Economics 21, pp.27-42.

[17] Forni, M. and L. Reichlin (1998). Let’s get real: a factor analytical approach to disaggre-
gated business cycle dynamics. Review of Economic Studies 65, 453-473.

[18] Forni M. and Reichlin L. (2001) Federal Policies and Local Economies: Europe and the
US. European Economic Review 45, pp. 109-34.

[19] Geweke, J. (1977) The dynamic factor analysis of economic time series. In D.J. Aigner
and A.S. Goldberger, Eds., Latent Variables in Socio-Economic Models, North Holland,
Amsterdam.

[20] Giannone D., Reichlin L. and Sala L. (2002) ”Tracking Greenspan: Systematic and Non-
systematic Monetary Policy Revisited”, CEPR Discussion Paper no. 3550.

[21] Giannone D., Reichlin L. and Sala L. (2003) ”VARs, Factor Models and the Empirical
Validation of Equilibrium Business Cycle Models”, CEPR Discussion Paper no. 3701.

[22] Granger, C.W. (1987) Implication of aggregation with common factors. Econometric The-
ory 3, pp.208-22.

[23] Hansen, L.P and T.J. Sargent (1991) Two problems in interpreting vector autoregressions.
In Rational Expectations Econometrics, L.P. Hansen and T.J. Sargent, eds. Boulder: West-
view, pp.77-119.

[24] Kilian, L. (1998) Small-Sample Confidence Intervals for Impulse Response Functions Re-
view of Economics and Statistics 80, pp.218-30.

[25] King, R.G., Plosser, C.I., Stock, J.H. and M.W. Watson (1991) Stochastic Trends and
Economic Fluctuations American Economic Review 81, pp.819-40.

[26] Leeper, E.M., Sims, C.A. and T. Zha (1996) What does monetary policy do? Brooking
Papers on Economic Activity 0, pp.1-63.

[27] Lippi, M. and L. Reichlin (1993). The dynamic effects of aggregate demand and supply
disturbances: Comment. American Economic Review 83, pp.644-52.

[28] Lippi, M. and L. Reichlin (1994). VAR analysis, non fundamental representation,
Blashchke matrices. Journal of Econometrics 63, pp.307-25.

[29] Quah, D. (1990) Permanent and transitory movements in labor income: an explanation
for ‘excess smoothness’ in consumption. Journal of Political Economy 98, pp.449-75.

25



[30] Rudebush, G.D. (1998) Do measures of monetary policy in a VAR make sense? Interna-
tional Economic Review 39, pp.907-31.

[31] Sargent, T.J. and C.A. Sims (1977). Business cycle modelling without pretending to have
too much a priori economic theory. In C.A. Sims, Ed., New Methods in Business Research,
Federal Reserve Bank of Minneapolis, Minneapolis.

[32] Sims, C.A. (1998) Comment on Glenn Rudebush’ ‘Do measures of monetary policy in a
VAR make sense?’ International Economic review 39, pp.933-48.

[33] Stock, J.H. and M.W. Watson (1998). Diffusion indexes. NBER Working Paper no. 6702.

[34] Stock, J.H. and M.W. Watson (2001). Vector Autoregressions. Journal of Economic Per-
spectives 15, pp. 101-15.

[35] Stock, J.H. and M.W. Watson (2002a) Macroeconomic Forecasting Using Diffusion In-
dexes. Journal of Business and Economic Statistics 20, 147-162.

[36] Stock, J.H. and M.W. Watson (2002b) Forecasting Using Principal Components from
a Large Number of Predictors, Journal of the American Statistical Association 97,
pp.116779.

[37] Uhlig, H. (1999) What are the effects of monetary policy on output? Results from an
agnostic identification procedure. CEPR Discussion Paper series no. 2137.

26


