
The Generalized Dynamic Factor Model

one-sided estimation and forecasting ∗

Mario Forni,
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Abstract

This paper proposes a new forecasting method which makes use of information from a
large panel of time series. As in Forni, Hallin, Lippi and Reichlin (2000), and in Stock
and Watson (2002a,b), the method is based on a dynamic factor model. We argue that
our method improves upon a standard principal component predictor in that, first, it fully
exploits all the dynamic covariance structure of the panel and, second, it weights the variables
according to their estimated signal-to-noise ratio. We provide asymptotic results for our
optimal forecast estimator and show that in finite samples our forecast outperforms the
standard principal components predictor.

JEL subject classification : C13, C33, C43. Key words and phrases : Dynamic factor models,
principal components, time series, large cross-sections, panel data, forecasting.

1 Introduction

Economists and forecasters nowadays typically have access to information scattered through a
huge number of observed aggregated and disaggregated economic time series. Intuition sug-
gests that concentrating on a few series, hence disregarding potentially relevant information, or
performing “naive” aggregation always produces suboptimal forecasts; the more scattered the
information, the more severe this loss of forecasting efficiency. Yet, most multivariate forecasting
methods in the literature are restricted to vector time series of low dimension, and allow for
incorporating only a limited number of key variables. Such methods are thus of little help in
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nauté française de Belgique, the Training and Mobility of Researchers Programme of the European Commission
(Contract ERBFMRX-CT98-0213), and a COFIN 2002 grant by Ministero dell’Istruzione, dell’Università e della
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large panels of time series, where the cross-sectional dimension is often of the same order as, or
even larger than the series lengths.

As a solution to this large-size problem, recent literature has given much attention to dy-
namic factor models, whose main features are: (a) an infinite number of cross-sectional units,
(b) a decomposition of each observed variable xit in the panel into two mutually orthogonal un-
observable components, the common component χit and the idiosyncratic component ξit, (c) a
small dynamic dimension of the common components χit, which are determined by dynamic
loading of a finite number q of common factors, and (d) a “weak correlation structure” (a notion
to be defined more precisely below) of the idiosyncratic components ξit, which need not, as in
traditional factor models, be mutually orthogonal across the panel.

Adopting a parametric approach, Quah and Sargent (1993) estimate by maximum likelihood
such a large cross-section model, under the restriction of orthogonal idiosyncratic components.
Doz, Giannone and Reichlin (2003) implement a maximum likelihood estimator by forcing or-
thogonality among the idiosyncratic components, and show that the impact of the resulting
misspecification is negligible as the cross-section size tends to infinity.

Weakly correlated idiosyncratic components are directly dealt with in the non-parametric
approach adopted in Forni and Reichlin (1998), Forni, Hallin, Lippi, and Reichlin (2000, 2004),
Forni and Lippi (2001), and Stock and Watson (2002a, b). Stock and Watson’s method (SW
henceforth), based on principal components of contemporaneous values of the x’s, can also be
used for forecasting. Forni, Hallin, Lippi and Reichlin’s (FHLR henceforth), based on frequency-
domain principal components, and therefore on two-sided filtering of the x’s, though more
efficient than SW’s for estimation of the common components, see FHLR (2000), is not directly
suitable for prediction.

In the present paper, still in a non-parametric spirit, we combine the advantages of FHLR
and SW to propose a new predictor. Like in previous literature,

(a) we start with the observation that the forecast of any of the x’s can be obtained as the sum
of the forecasts of the common and the idiosyncratic components, each based on its own
past values. The idiosyncratic component, being mildly cross-correlated, can be predicted
by means of traditional univariate or low-dimensional forecasting methods. Thus, we
concentrate on prediction of the common components χit.

(b) Such prediction is obtained by, firstly, estimating the factor space by linear combinations
of the x’s. As the cross-section size tends to infinity, the idiosyncratic components, being
poorly correlated, cancel out, and the factor space is approached. The predictor is then
obtained by projecting future values of the χ’s on the estimated factor space.

The novelty of this paper lies both in the estimation of the factor space and in the way
projections onto this space are performed. We proceed in two steps. The first step uses the
dynamic techniques of FHLR (2000) to obtain estimates of the covariance matrices of common
and idiosyncratic components. In the second step, these covariances are used to produce

(A) a new estimation of the factor space: we employ generalized eigenvectors associated with
the estimated covariance matrices of common and idiosyncratic components to obtain (un-
like in FHLR, 2000) linear combinations—referred to as generalized principal components—
of contemporaneous x’s with minimum idiosyncratic-common variance ratio;

(B) a new estimation of the projection of future values of the χ’s on the factor space, based
on the estimated lagged covariance matrices of the χ’s.

Both our two-step predictor and SW’s are consistent, in the sense that, as the cross-section
size n and the number of time observations T tend to infinity, both predictors tend in probability
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to the population optimal predictor. However, we show that our predictor outperforms SW’s,
in simulations as well as on SW’s own data set. Intuitively, our predictor indeed has a twofold
advantage over SW’s.

First, while SW’s estimation of the h-step ahead projection matrix is based on the lag-h
covariance matrix of the x’s, our method employs the first-step estimate of the lag-h covariance
matrix of the common components. Such estimate is based on the frequency-domain principal
components, as in FHLR (2000), which allow efficient aggregation of variables that may be out
of phase, so that the information contained in all cross-covariances of the x’s, both lagged and
contemporaneous, is fully exploited to obtain the h-step ahead projection matrix.

Second, our generalized principal component method performs better than SW’s standard
principal component one in approaching the factor space, since it exploits preliminary estimation
of the contemporaneous covariance matrices of common and idiosyncratic components. Roughly
speaking, our first step enables us to place smaller weights on variables having larger idiosyncratic
components, so that the idiosyncratic ‘error’ contained in the linear combination is minimized.

The paper is organized as follows. In Section 2 we set up the model and the main assumptions.
In Section 3 we provide a detailed presentation of the two-step method and our predictor. In
Section 4 we prove consistency. In Section 5 our two-step method is compared to SW’s method
by using simulated panels. The results of an in-depth comparison based on the empirical panel
used in Stock and Watson (2002b) are briefly reported. Section 6 concludes. Some lemmas,
which are used in Section 4, are stated and proved in the Appendix.

2 The model

The model used in the present paper is an approximate factor model, in that the idiosyncratic
components are allowed to be weakly correlated, like in Chamberlain (1983) and Chamberlain
and Rothschild (1983), and contrary to Sargent and Sims (1977), Geweke (1977), and Quah and
Sargent (1993). It is a dynamic factor model in that the common factors are loaded through a
lag structure, like in FHLR (2000), Forni and Lippi (2001), SW (2002a,b), Bai and Ng (2002),
and Bai (2003). However, unlike in FHLR (2000) and Forni and Lippi (2001), the lag structure
is assumed to be finite.

Denote by X = (xit)i=1,...,n; t=1,...,T an n×T rectangular array of observations. Throughout,
we assume that

A1. X is a finite realization of a real-valued stochastic process {xit ∈ L2(Ω,F ,P), i ∈ N, t ∈ Z} ,
where all n-dimensional vector processes {xt = (x1t · · · xnt)

′, t ∈ Z}, n ∈ N, are stationary,
with zero mean and finite second-order moments ΓΓΓk = E[xtx

′
t−k], k ∈ N.

The spectral techniques to be used in the sequel require in addition the following technical
assumption

A2. For all n ∈ N, the process {xt, t ∈ Z} admits a Wold representation xt =
∑∞

k=0 Ckwt−k,
where the full-rank n-dimensional innovations wt have finite moments of order four, and
the n × n matrices Ck = (Cij,k) satisfy

∑∞
k=0 |Cij,k|k

1/2 < ∞ for all n, i, j ∈ N.

Assumptions A1 and A2 jointly will be referred to as assumption A.
To avoid heavy notation, the dependence on n of the vectors xt and wt, of the matrices ΓΓΓk

and Ck, and of many other scalar, vector, and matrix quantities to be defined below, is not
made explicit. In the same way, explicit reference to T will be avoided for estimated quantities.
For example, an estimate of ΓΓΓk, which depends on n and T , will be denoted by Γ̂̂Γ̂Γk.
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The basic idea, in dynamic factor analysis, is that each process xit, i ∈ N, is the sum of a
common component χit and an idiosyncratic component ξit. The common component is driven
by a q-dimensional vector of common factors ft = (f1t f2t · · · fqt)

′, which are loaded with
possibly different coefficients and lags:

χit = bi1(L)f1t + bi2(L)f2t + · · · + biq(L)fqt.

Note that q is independent of n (and small as compared to n in empirical applications). In
vector notation, defining χχχt = (χ1t . . . χnt)

′ and ξξξt = (ξ1t . . . ξnt)
′, and denoting by B(L) as

the n × q matrix whose (i, j) entry is bij(L), our model is thus

xt = χχχt + ξξξt = B(L)ft + ξξξt, (2.1)

where the factors ft follow a VAR scheme of the form A(L)ft = ut. Our assumptions on (2.1)
are the following.

B1.(a) For i ∈ N and j = 1, . . . , q, the orders of the bij(L)’s have a finite maximum s ≥ 0; thus
B(L) = B0 +B1L+ · · ·+BsL

s is an n× q matrix polynomial in the lag operator L, where
Bs 6= 0 for n greater than or equal to some m ≥ 1.

(b) A(L) = I−A1L−· · ·−ASLS is a q× q matrix polynomial, with AS 6= 0 and S < s+1.

(c) All solutions of det[A(z)] = 0, z ∈ C, lie outside the unit ball.

B2. The vector {ut = (u1t . . . uqt)
′, t ∈ Z} of common shocks, is a q-dimensional orthonormal

white noise process orthogonal to {ξit, i = 1, . . . , n, t ∈ Z} (this implies that χit and ξjt

are orthogonal at any lead and lag for all i, j ∈ N).

Of course the matrices Bj are nested as n increases. Assumption B1(c) on the characteristic
roots of A(L) guarantees the existence of the inverse operator [A(L)]−1. We shall return to
B1(b) in the next section.

Under Assumption A, finite second-order moments exist for all variables involved in the
model. Let ΣΣΣχ(θ), ΣΣΣξ(θ), θ ∈ [−π, π], be the n × n spectral density matrices of χχχt and ξξξt,

respectively, and denote by λχ
k , λξ

k the corresponding eigenvalues, namely, the mappings θ 7→

λχ
k (θ) and θ 7→ λξ

k(θ), where λχ
k (θ) and λξ

k(θ) stand for the k-th largest eigenvalues of ΣΣΣχ(θ) and
ΣΣΣξ(θ), respectively. On these spectral densities, we make the following assumptions.

C1.(a) λχ
q (θ) → ∞ as n → ∞, θ-a.e. in [−π π].

(b) λχ
k (θ) > λχ

k+1(θ) θ-a.e. in [−π π], k = 1, . . . , q.

C2. There exists a real Λ such that λξ
1(θ) ≤ Λ for any θ ∈ [−π π] and any n ∈ N.

Assumption C1(b) requires that the first q + 1 eigenvalues be distinct for almost all θ (note
that λχ

j (θ) = 0 for j > q and all θ). It makes proofs easier while not causing a serious loss of
generality. Assumptions C1(a) and C2 are needed to guarantee identification of the common
and the idiosyncratic components (see Forni and Lippi, 2001). Note that condition C2 on the

asymptotic behavior of λξ
k(θ) includes the case in which the idiosyncratic components are mutu-

ally orthogonal, with uniformly bounded variances. Mutual orthogonality is a standard, though
highly unrealistic assumption in finite-n factor models; condition C2 relaxes this assumption,
while giving a precise meaning to the expression “weak correlation” used in the Introduction.

Letting Ft = (f ′t f ′t−1 . . . f ′t−s)
′ and C = (B0 B1 · · · Bs), model (2.1) also can be written as

xt = CFt + ξξξt, (2.2)
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in which r = q(s + 1) common factors are loaded only contemporaneously. Equation (2.2) looks
like a static factor model. However, the dynamic nature of (2.1) implies that Ft has a special
structure: indeed, the spectral density matrix of Ft has rank q, which is smaller than r if s > 0.
In the sequel we call ‘static factors’ the factors of the static representation (2.2), i.e. the r entries
of Ft, and ‘dynamic factors’ the q entries of ft.

Finally, let ΓΓΓχ
k , ΓΓΓξ

k be the lag-k covariance matrices of the vectors χχχt, ξξξt, and µχ
j , µξ

j the j-th

eigenvalues of ΓΓΓχ
0 , ΓΓΓξ

0, respectively. We assume that

D. µχ
r → ∞ as n → ∞.

Assumption D rules out the case in which some of the elements in Ft are loaded only by a finite
number of the x’s. Note that C1(a) does not imply D; for example, if χ1t = ut−1 and χit = ut

for i ≥ 2, C1(a) clearly holds, with q = 1, but D does not, since µχ
1 → ∞ whereas µχ

2 is bounded
as n → ∞. Further technical assumptions will be introduced in Section 4.

3 A two-step forecasting method

As already observed in the Introduction, the paper concentrates on forecasting the common
components χi,T+h. As a by-product we also provide an estimator for in-sample values of the
χ’s. Both problems, forecasting and in-sample estimation, can be reduced to estimating (i) the
factors and (ii) the covariances between χi,T+h, or χt, and the factors.

Formally, denote by G(F, t) the linear space spanned by Fjt, for j = 1, . . . , r. Quite obviously,
the common component of χit coincides with the linear projection

χit = Proj(χit|G(F, t)). (3.1)

of χit on G(F, t). Moreover, using the inequality S < s + 1 (see Assumption B1(b)), it is easily
seen that the best linear predictor, based on FT−k, k ≥ 0, of χi,T+h, denoted by χi,T+h|T , is
given by the linear projection

χi,T+h|T = Proj(χi,T+h|G(F, T )). (3.2)

Note that Assumption B1(b) implies that enlarging the projection space with past values of Ft

does not improve prediction. Note however that B1(b) is just a convenience. If S were larger
than s, optimal prediction would require the projection on a space including past values of Ft,
this implying only minor changes in our statements (Proposition 4.1 in particular) and proofs.

Steps 1 and 2 of our procedure estimate (3.1) and (3.2) by estimating, in reverse order, the
factor space and the relevant covariance matrices.

3.1 Step one: estimating ΓΓΓ
χ
k and ΓΓΓ

ξ
k

In FHLR (2000), estimation of the common components is based on the dynamic principal
component method (see Brillinger, 1981, Chapter 9). Denote by Σ̂̂Σ̂Σ(θ) = (σ̂ij(θ)) , θ ∈ [−π, π], a
consistent periodogram-smoothing or lag-window estimator of the n×n spectral density matrix
ΣΣΣ(θ) = (σij(θ)) of xt. Let λ̂j(θ) be Σ̂̂Σ̂Σ(θ)’s j-th largest eigenvalue, p̂j(θ) = (p̂j1(θ) . . . p̂jn(θ))
the corresponding row eigenvector, and P̂(θ) = (p̂′

1(θ) p̂′
2(θ) · · · p̂′

q(θ))′, a q×n matrix. Defining

p̂
j
(L) =

1

2π

∞
∑

k=−∞

[
∫ π

−π
p̂j(θ)eikθdθ

]

Lk, (3.3)
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(the inverse Fourier transform of p̂j(θ)), the j-th dynamic principal components of xt is defined
as p̂

j
(L)xt. The first q dynamic principal components are used to obtain a consistent (see

FHLR 2000) estimation χ̂̂χ̂χD
t = P̂

∗
(L)

[

P̂(L)xt

]

of the χ’s (with obvious notation P̂(L); star

indicates complex conjugation and transposition; superscript D stands for ‘dynamic method’).
The trouble with this estimation method is that the filters (3.3) used in the definition of

χ̂̂χ̂χD
t are two-sided in general. This creates no problem in the central part of the sample, but

the performance of χ̂̂χ̂χD
t as an estimator of χχχt deteriorates as t approaches T or 1. For the same

reason, dynamic principal components cannot be used for prediction.
However, the spectral density of χ̂̂χ̂χD

t provides estimates of the spectral density matrices

Σ̂̂Σ̂Σχ(θ) = λ̂1(θ)p̂∗
1(θ)p̂1(θ) + · · · + λ̂q(θ)p̂∗

q(θ)p̂q(θ) (3.4)

Σ̂̂Σ̂Σξ(θ) = λ̂q+1(θ)p̂∗
q+1(θ)p̂q+1(θ) + · · · + λ̂n(θ)p̂∗

n(θ)p̂n(θ). (3.5)

of χχχt and ξξξt; see FHLR 2000 for details. Therefore, the covariance matrices of χχχt and ξξξt can be
estimated as

Γ̂̂Γ̂Γ
χ

k =

∫ π

−π
eikθ Σ̂̂Σ̂Σ

χ
(θ)dθ and Γ̂̂Γ̂Γ

ξ

k =

∫ π

−π
eikθ Σ̂̂Σ̂Σ

ξ
(θ)dθ. (3.6)

3.2 Step two: estimating the factor space and the best linear forecast

The general idea underlying our method is that the factor space can be consistently estimated
by linear combinations of the x’s, as n tends to infinity. Different linear combinations produce
different estimators. We argue that the information contained in the covariance matrices esti-
mated in Section 3.1 can be used to determine linear combinations of the x’s which are more
efficient than standard principal components.

Consider all the linear combinations axt = a1x1t + · · · + anxnt of the x’s which fulfill the
constraint var(axt) = 1. Observe that axt = aχχχt + aξξξt = Proj(axt|G(F, t))+ aξξξt, so that, under
the constraint, the linear combination of the x’s which is closest to the factor space is obtained by
solving mina∈Rn var(aξξξt), s.t. var(axt) = 1, which is obviously equivalent to maxa∈Rn var(aχχχt),
s.t. var(aξξξt) = 1, or, using the variances and covariances estimated in Section 3.1,

max
a∈Rn

a Γ̂̂Γ̂Γ
χ

0 a′ s.t. a Γ̂̂Γ̂Γ
ξ

0 a′ = 1.

Extending this simple argument, we want to find r (the dimension of G(F, t)) independent
linear combinations Ŵjt = Ẑj xt, where the weights Ẑj are defined recursively as

Ẑj = Arg max
a∈Rn

a Γ̂̂Γ̂Γ
χ

0 a′ s.t. a Γ̂̂Γ̂Γ
ξ

0 a′ = 1 and a Γ̂̂Γ̂Γ
ξ

0 Ẑ′
m = 0, 1 ≤ m ≤ j − 1. (3.7)

for j = 1, . . . , r (for j = 1 only the first constraint applies). The solutions Ẑj of this problem
are the generalized eigenvectors associated with the generalized eigenvalues ν̂j of the couple of

matrices (Γ̂̂Γ̂Γ
χ

0 , Γ̂̂Γ̂Γ
ξ

0), i.e. the solutions of

Ẑj Γ̂̂Γ̂Γ
χ

0 = ν̂j Ẑj Γ̂̂Γ̂Γ
ξ

0 j = 1, 2, . . . , n, (3.8)

with the normalization constraints Ẑj Γ̂̂Γ̂Γ
ξ

0 Ẑ′
j = 1 and Ẑi Γ̂̂Γ̂Γ

ξ

0 Ẑ′
j = 0 for i 6= j; see Theorem

A.2.4 of Anderson (1984), p. 590. The linear combinations Ŵjt are the generalized principal

components of xt relative to the couple (Γ̂̂Γ̂Γ
χ

0 , Γ̂̂Γ̂Γ
ξ

0).
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Defining Ẑ =
(

Ẑ
′

1 · · · Ẑ
′

r

)′
, the space G(F, t) is estimated by the first r generalized principal

components of the x’s, i.e. by the r components of

Ẑxt =
(

Ẑ1xt Ẑ2xt · · · Ẑrxt

)′
. (3.9)

Observing that the covariance between χχχT+h and ẐxT (or χχχt and Ẑxt) equals the covariance

between χχχT+h and ẐχχχT (or χχχt and Ẑχχχt), the estimators of the projections (3.1) and (3.2), in
vector form, are easily obtained as

χ̂̂χ̂χt =

[

Γ̂̂Γ̂Γ
χ

0 Ẑ′
(

Ẑ Γ̂̂Γ̂Γ0 Ẑ′
)−1

]

[

Ẑ xt

]

(3.10)

and
χ̂̂χ̂χT+h|T =

[

Γ̂̂Γ̂Γ
χ

h Ẑ′
(

Ẑ Γ̂̂Γ̂Γ0 Ẑ′
)−1

]

[

Ẑ xT

]

, (3.11)

respectively; these projections are the two-step estimators (predictors) we are proposing.
An alternative method to estimate the best linear predictor of the χ’s might be a factorisation

of Σ̂̂Σ̂Σ
χ
(θ) along the lines of Wiener and Masani (1957, 1958) or Rozanov (1967). However,

adapting this factorization approach to the present context is far from trivial. Indeed, our
spectral density matrix is singular (its rank is q, irrespective of n), which raises a serious problem
with the choice of a non-singular submatrix. Moreover, the matrix to be inverted under our
approach is only r × r (see (3.10) and (3.11)), with r independent of n, so that the motivation
for factorization as opposed to the projection method (pp. 100-102 of Wiener and Masani 1958)
loses much of its strength.

To get an intuition of how generalized principal components are constructed, consider the
very simple example under which χit = ut for any i, with orthogonal idiosyncratic terms. In this
case, assuming that the relevant covariance matrices are estimated without error, the entries
of Ẑ1 are proportional to 1/σξ

i , i.e. inversely proportional to the ‘size’ of the idiosyncratic
components. More generally, it is easily seen that the generalized principal components of
xt are equal to the standard principal components of the transformed vector x̃t = (Γ̂̂Γ̂Γξ

0)
−1/2xt.

Such principal components are the ML estimators of Ft under the assumption of known diagonal
idiosyncratic covariance matrix (see Lawley and Maxwell 1971, Chapter 4).

3.3 Comparison with Stock and Watson’s method

Consider the k-lag sample cross-covariance matrix Γ̂̂Γ̂Γk = (T − k)−1 ∑T
t=k+1 xtx

′
t−k of xt. Let m̂j

be the j-th largest eigenvalue of Γ̂̂Γ̂Γ0, with row eigenvector Ŝj. Moreover, let M̂ be the r × r

diagonal matrix with diagonal elements m̂1, m̂2, . . . , m̂r, and put Ŝ =
(

Ŝ
′

1 · · · Ŝ
′

r

)′
(a r × n

matrix). Stock and Watson’s estimation of the factor space and the projections are given by

Ŝxt =
(

Ŝ1xt Ŝ2xt · · · Ŝrxt

)′
(3.12)

χ̂̂χ̂χSW
t =

[

Γ̂̂Γ̂Γ0 Ŝ′
(

Ŝ Γ̂̂Γ̂Γ0 Ŝ′
)−1

]

[

Ŝ xt

]

= Ŝ′ [Ŝxt] (3.13)

χ̂̂χ̂χSW
T+h|T =

[

Γ̂̂Γ̂Γh Ŝ′
(

Ŝ Γ̂̂Γ̂Γ0 Ŝ′
)−1

]

[

Ŝ xt

]

= Γ̂̂Γ̂ΓhŜ
′

M̂−1 [ŜxT ]. (3.14)

Let us compare this with our two-step method.
(I) Since no preliminary estimation of the matrices ΓΓΓχ

h is available, estimated values of χχχt

and χχχT+h in SW are obtained by projecting xt and xT+h on the estimated factors. Hence,

SW use Γ̂̂Γ̂Γh in the projection matrix, whereas we use Γ̂̂Γ̂Γ
χ

h, which is obtained via the dy-
namic method of FHLR (2000) and therefore conveys information contained in the whole
covariance sequence {Γ̂ΓΓs, s ∈ Z}.
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(II) Moreover, with the two-step method, as illustrated in Section 3.2, the covariance matrices
estimated in Step 1 are used to obtain efficient weights in Step 2, so that the factor space
is approximated by Ẑxt instead of SW’s standard principal components Ŝxt.

Though the arguments in (I) and (II) provide a strong heuristic support for the claim that
forecasts based on the two-step method outperform those based on SW’s, a formal derivation of
optimality properties or relative efficiency values is extremely difficult in such a general context,
and will not be pursued in this paper. However, an important insight into the finite-sample
relative performances of our method and SW’s will be obtained in Section 5 by comparing
forecast results on simulated and empirical panels.

4 Consistency

In this section we prove convergence in probability of χ̂it to χit and of χ̂i,T+h|T to the best
linear forecast of χi,T+h, for each i, as T and n tend to infinity. As in Section 3, denote by

Σ̂̂Σ̂Σ(θ) = (σ̂ij(θ)) any consistent estimator of the n × n spectral density matrix ΣΣΣ(θ) = (σij(θ)).
Under Assumption A2 , for a given n and any ǫ > 0,

lim
T→∞

P

[

max
1≤i,j≤n

sup
θ∈[−π,π]

|σ̂ij(θ) − σij(θ)| > ǫ

]

= 0. (4.1)

This is an easy consequence of Remark 1 to Theorem 10.4.1 of Brockwell and Davis (1991), p.
353 (note that Remark 1 applies, mutatis mutandis, to their Theorem 11.7.2, p. 447, which
extends Theorem 10.4.1 to the multidimensional case). Define

Σ̌ΣΣ
χ
(θ) = λ1(θ)p∗

1(θ)p1(θ) + · · · + λq(θ)p∗
q(θ)pq(θ)

Σ̌ΣΣ
ξ
(θ) = λq+1(θ)p∗

q+1(θ)pq+1(θ) + · · · + λn(θ)p∗
n(θ)pn(θ),

where λnj(θ) and pnj(θ) are, as in Section 2, eigenvalues and eigenvectors of ΣΣΣ(θ). Note that

Σ̌ΣΣ
χ
(θ) and Σ̌ΣΣ

ξ
(θ) are not the population spectral density matrices of χχχt and ξξξt, respectively.

They are, so to speak, estimates of such matrices for T infinite but finite n.
Under Assumption C1(b), continuity of the eigenvalues and first q eigenvectors as functions of

the entries of Σ̂̂Σ̂Σ(θ) (the somewhat inaccurate expression “continuity of the eigenvectors” stands

for continuity, for all j = 1, . . . , q, of p̂∗
j (θ)p̂j(θ)) implies that (4.1) applies to the entries of Σ̂̂Σ̂Σ

χ

and Σ̌ΣΣ
χ

respectively. More precisely, for any given n and any ǫ > 0,

lim
T→∞

P

[

max
1≤i,j≤n

sup
θ∈[−π,π]

|σ̂χ
ij(θ) − σ̌χ

ij(θ)| > ǫ

]

= 0. (4.2)

The same property holds for Σ̂̂Σ̂Σ
ξ

and Σ̌ΣΣ
ξ
, so that Σ̂̂Σ̂Σ

χ
and Σ̂̂Σ̂Σ

ξ
, for fixed n, are consistent estimators

of Σ̌ΣΣ
χ

and Σ̌ΣΣ
ξ

respectively. Moreover, (4.2) implies that Γ̂̂Γ̂Γ
χ

k and Γ̂̂Γ̂Γ
ξ

k, as defined in (3.6), are
consistent estimators, of

Γ̌ΓΓ
χ
k =

∫ π

−π
eikθΣ̌ΣΣ

χ
(θ)dθ and Γ̌ΓΓ

ξ
k =

∫ π

−π
eikθΣ̌ΣΣ

ξ
(θ)dθ, (4.3)

respectively.

Denote by µ̌χ
k and µ̌ξ

k the eigenvalues of Γ̌̌Γ̌Γ
χ
0 and Γ̌̌Γ̌Γ

ξ
0 respectively. Lemma 7.2 (see the Ap-

pendix) proves that, under Assumptions A, B, C and D, limn→∞ µ̌χ
r = ∞ while µ̌ξ

1 is bounded.
We will need the following technical assumption
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E1.(a) µ̌χ
k > µ̌χ

k+1, k = 1, . . . , r.

(b) µ̌ξ
n is bounded away from zero as n → ∞.

Assumption E(a), like Assumption C1(b), does not imply any significant loss of generality.

Lastly, let us introduce some new notation. (i) Set K̂h = Γ̂χ
hΓ̂χ
hΓ̂χ
h Ẑ

(

Ẑ Γ̂̂Γ̂Γ0 Ẑ′
)−1

Ẑ, so that

χ̂̂χ̂χT+h|T = K̂hxT . (ii) Denote by ŵjt the standardized version of Ŵjt. Since

Ẑj Γ̂̂Γ̂Γ0 Ẑ′
j = Ẑj Γ̂̂Γ̂Γ

χ

0 Ẑ′
j + Ẑj Γ̂̂Γ̂Γ

ξ

0 Ẑ′
j = 1 + ν̂j ,

then ŵjt = ẑjxtt, where ẑj = Ẑj/
√

1 + ν̂j. Note that since ẐjΓ̂̂Γ̂Γ0Ẑ
′
k = 0 for j 6= k (using the

constraints of (3.7)), the linear combinations ŵjt, for k = 1, 2, . . . , r, form an orthonormal system
spanning a space of the same dimension as G(F, t). (iii) Denote by Žj, ν̌j, Ǩh, χ̌i,T+h|T , etc.,

the objects playing the same roles as Ẑj, ν̂j, K̂h, χ̂i,T+h|T , etc., but with respect to Γ̌̌Γ̌Γ
χ
0 and Γ̌̌Γ̌Γ

ξ
0.

Proposition 4.1 Suppose that Assumptions A, B, C, D and E hold for model (2.1). Then, for
any given i, ǫ > 0, and η > 0, there exist N0 = N0(ǫ, η), with N0 > i, and T0 = T0(n, ǫ, η) such
that, for all n ≥ N0 and all T ≥ T0,

P
[∣

∣

∣χ̂i,T+h|T − χi,T+h|T

∣

∣

∣ > ǫ
]

≤ η. (4.4)

The proof of Proposition 4.1 relies on the following two lemmas.

Lemma 4.1 Let an = (an1 an2 · · · ann), n ∈ N, denote a triangular array of real numbers such
that limn→∞

∑n
i=1 a2

ni = 0. Then, under the assumptions of Proposition 4.1,

anξξξt = (an1 an2 · · · ann) (ξ1t ξ2t · · · ξnt)
′ −→ 0

in quadratic mean as n → ∞. It follows that anxt converges to G(F, t) in quadratic mean.

For a proof, see e.g. Lemma 3 of FHLR (2000).

Lemma 4.2 Let K denote a subspace of a Hilbert space H of centered, square-integrable random
variables, with covariance scalar product. Assume that K is generated by the independent k-tuple
(v1, v2, . . . , vk), vj ∈ H. Let {(vn1, vn2, . . . , vnk) , n ∈ N} be a sequence of orthonormal k-tuples
of H such that vnj − Proj (vnj|K) converges to zero in quadratic mean as n → ∞. Then, the
projection of v ∈ H onto the space Kn spanned by (vn1, . . . , vnk) converges in quadratic mean,
as n → ∞, to the projection of v onto K.

For the proof, see the Appendix.

Proof of Proposition 4.1. Lemmas 7.1 and 7.2 (see the Appendix) imply that ν̌r tends to
infinity as n → ∞. As a consequence, each of the r sequences {Žj/

√

1 + ν̌j, n ∈ N}, j = 1, . . . , r,
is a triangular array fulfilling the assumption of Lemma 4.1. Indeed, Žj is bounded in modulus,

since 1 = Žj Γ̌̌Γ̌Γ
ξ
0 Ž′

j ≥ µ̌ξ
n Žj Ž′

j , where, in view of Assumption E(b), µ̌ξ
n is bounded away from

zero. Lemma 4.1 implies that w̌jt = Žjxt/
√

1 + ν̌j converges in quadratic mean to the space
G(F, t) as n → ∞, for j = 1, . . . , r. Then, by Lemma 4.2, χ̌i,T+h|T converges to χi,T+h|T in
quadratic mean and therefore in probability. Thus, given ǫ > 0 and η > 0, there exists N1(ǫ, η),
such that for n > N1

P
[

|χi,T+h|T − χ̌i,T+h|T | > ǫ
]

< η. (4.5)
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Convergence in probability of Γ̂̂Γ̂Γ
χ

0 and Γ̂̂Γ̂Γ
ξ

n to Γ̌̌Γ̌Γ
χ
0 and Γ̌̌Γ̌Γ

ξ
0, respectively, as T → ∞, and Assumption

E(a), imply that K̂h converges in probability to Ǩh for T → ∞. This implies that, given n,
ǫ > 0 and η > 0, there exists T1(n, ǫ, η) such that, for T > T1,

P





n
∑

j=1

|K̂h,ij − Ǩh,ij| > ǫ



 < η.

Moreover, given n and η > 0, let M(n, η) be a positive real such that P [maxj=1,n |xjt| ≥ M(n, η)] <
η. Then, given n, ǫ > 0 and η > 0, there exists T2(n, ǫ, η) such that, for T > T2,

P
[
∣

∣

∣χ̌i,T+h|T − χ̂i,T+h|T

∣

∣

∣ > ǫ
]

= P





∣

∣

∣

∣

∣

∣

n
∑

j=1

(K̂h,ij − Ǩh,ij)xjt

∣

∣

∣

∣

∣

∣

> ǫ



 < η. (4.6)

To see this, note that

P
[∣

∣

∣

∑n
j=1(K̂h,ij − Ǩh,ij)xjt

∣

∣

∣ > ǫ
]

≤ P
[

∑n
j=1 |(K̂h,ij − Ǩh,ij)|M(n, η/2) > ǫ and maxj=1,n |xjt| < M(n, η/2)

]

+P [maxj=1,n |xjt| ≥ M(n, η/2)] ,

so that (4.6) is obtained defining T2(n, ǫ, η) = T1(n, ǫ/M(n, η/2), η/2). Lastly,

P
[∣

∣

∣χi,T+h|T − χ̂i,T+h|T

∣

∣

∣ > ǫ
]

≤ P
[∣

∣

∣χi,T+h|T − χ̌i,T+h|T

∣

∣

∣ > ǫ/2
]

+P
[∣

∣

∣χ̌i,T+h|T − χ̂i,T+h|T

∣

∣

∣ > ǫ/2
]

.

Defining N0(ǫ, η) = N1(ǫ/2, η/2) and T0(n, ǫ, η) = T2(n, ǫ/2, η/2), the conclusion follows from
(4.5) and (4.6). QED

As the reader can easily check, the proof of Proposition 4.1 can be adapted with no difficulty
to prove consistency of our two-step in-sample estimator (3.11). Moreover, Proposition 4.1 holds

if the matrices Γ̂̂Γ̂Γ
ξ

0 and Γ̌̌Γ̌Γ
ξ
0 are replaced by any other sequence of couples of positive definite n×n

symmetric matrices D̂, depending on n and T , and Ď, depending on n, respectively, provided
that D̂− Ď converges to zero in probability for any n, as T → ∞, and that all eigenvalues of Ď

are bounded and bounded away from zero as n → ∞ (indeed Lemmas 7.1 and 7.2 hold).

5 Finite sample performances: simulated and empirical panels

In this section we apply both our two-step and SW’s estimator to simulated panels which differ
by the degree of heterogeneity of the idiosyncratic variances and the dynamic structure of the
common components. We also briefly report some of the results of two empirical exercises
comparing the predictive performances of the two-step and SW predictors on SW’s own dataset.

5.1 Simulation results

The first model, M1, has one autoregressive factor, loaded only contemporaneously, and spherical
idiosyncratic components. This is a case where, in principle, SW’s method should perform
comparatively well. Models M2, M3 and M4 have a richer and more heterogeneous dynamic
structure—a feature which should favor the dynamic method. M2 has MA(3) loading filters,
two serially uncorrelated factors and diagonal idiosyncratic variance-covariance matrix. M3 and
M4 have one autoregressive factor and the common components of different groups are shifted
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in time. The two models differ by the behaviours of their idiosyncratic components: in M3 they
have different variances whereas in M4 variances are the same. The comparison between the last
two models should help understanding the role of heterogeneity of the size of the idiosyncratic
components. Finally, in M3 the idiosyncratic components are not mutually orthogonal (but
condition C2 is still satisfied).

Model M1. Under this model, the observations are generated by

x∗
it = λift + αciǫit, with (1 − 0.5 L)ft = ut, (M1)

where the shocks ut and ǫit, t = 1, . . . , T , i = 1, . . . , n, and the coefficients λi, i = 1, . . . , n
are mutually independent standard normal variables, while the coefficients ci are mutually
independent, independent of the latter variables, and uniformly distributed on the interval
[0.1, 1.1] in order to avoid nearly zero idiosyncratic components. The constant α is set so
as to guarantee that the average idiosyncratic-common variance ratio is equal to one (the
same holds for all models below). Here q = 1 and s = 1.

Model M2. Observations are generated by

x∗
it =

3
∑

k=0

aiku1,t−k +
3

∑

k=0

biku2,t−k + αciǫit. (M2)

Again, aik and bik, k = 0, 1, 2, 3, i = 1, . . . , n and the shocks u1t, u2t and ǫit t = 1, . . . , T ,
i = 1, . . . , n are standard normal variables while the ci’s are uniformly distributed over the
interval [0.1 1.1], as for (M1). Here q = 2 and s = 3.

Model M3. The observations are generated by

x∗
it =

li+2
∑

k=li

λk−li,ift−k + ξ∗it, with (1 − aL)ft = ut and ξ∗it = αci(ǫit + ǫi+1,t), (M3)

where li = 0 for 1 ≤ i ≤ m , li = 1 for m + 1 ≤ i ≤ 2m, and li = 2 for 2m + 1 ≤ i ≤ n. In
order for the three types (li = 0, 1, 2) to be equally present in the panel, we took m = [n/3]
(as usual, we denote by [z] the largest integer less than or equal to z). Here q = 1 and
s = 5. Note that ξ∗it is positively correlated with ξ∗i+1,t, but is orthogonal to ξ∗i+k,t at any
lead and lag for k > 1.

Model M4. The observations are generated as in M3, but idiosyncratic components are
no longer cross-sectionally correlated (ξ∗it = αciǫit), and the coefficients ci are such that
var(λift)/var(x

∗
it) = 0.5; the percentage of idiosyncratic variance then is the same for all i.

We generated data from each model, with n = 20, 50, 100, 200 and T = 20, 50, 100, 200,
meaning a total number of 64 experiments; each experiment was replicated 1000 times. Before
estimation, all variables were taken in deviation from their sample means and divided by their
standard deviations, i.e. spectral estimation was conducted on the standardized observations
xit = (x∗

it−x̄∗
i )/si, where x̄∗

i =
∑T

t=1 x∗
it/T and s2

i =
∑T

t=1(x
∗
it−x̄∗

i )
2/(T−1). For each replication,

we computed the in-sample estimates and the one-step ahead forecasts using both SW’s and the
two-step method. We estimated the spectral density matrix of the x’s as

Σ̂̂Σ̂Σ(θ) =
1

2π

M
∑

k=−M

wkΓ̂̂Γ̂Γke
−iθk,
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where wk = 1 − |k|
M+1 with window size M = [T 1/2]. The spectra were evaluated at 101 equally

spaced frequencies in the interval [−π, π], namely, at a grid of frequencies θh = 2πh
100 , h =

−50, . . . , 50. We then computed the dynamic principal component decomposition, as explained

in Section 3. In order to obtain Γ̂̂Γ̂Γ
χ

k and Γ̂̂Γ̂Γ
ξ

k we used the inverse discrete Fourier transforms

Γ̂̂Γ̂Γ
χ

k =
2π

101

50
∑

h=−50

Σ̂̂Σ̂Σ
χ
(θh)eiθhk and Γ̂̂Γ̂Γ

ξ

k =
2π

101

50
∑

h=−50

Σ̂̂Σ̂Σ
ξ
(θh)eiθhk,

with Σ̂̂Σ̂Σ
ξ
(θ) = Σ̂̂Σ̂Σ(θ) − Σ̂̂Σ̂Σ

χ
(θ)—except for Γ̂̂Γ̂Γ

ξ

0, as expained below. Throughout, we assumed both
the number q of dynamic factors and the number r = q(s + 1) of static factors to be known.

An important empirical finding of our simulations is that, when the cross-sectional dimension
n is large with respect to the period of observation T , forcing to zero the off-diagonal entries of the

estimated variance-covariance matrix Γ̂̂Γ̂Γ
ξ

0 of the idiosyncratic components significantly improves
forecasting performances, even when the actual matrix is non diagonal. Our explanation for

this somewhat counterintuitive result is the following. When computing Γ̂̂Γ̂Γ
ξ

0, we unavoidably get
some spurious large covariances, even when the true covariance is zero. When n increases and
T is held fixed, the number of such errors increases as n2, the order of the number of elements

in the n × n matrices Γ̂̂Γ̂Γ
ξ

0. On the other hand, by forcing to zero the off-diagonal entries of our
estimated matrix, we ignore the true off-diagonal non-zero entries. Also in this case the error
increases with n, but, owing to the boundedness of the eigenvalues, it increases only linearly in

n. As mentioned at the end of Section 4, replacing Γ̂̂Γ̂Γ
ξ

0 with any symmetric positive semi-definite
matrix with bounded eigenvalues does not affect consistency results. Therefore, we henceforth

always set to zero the off-diagonal entries of Γ̂̂Γ̂Γ
ξ

0 before computing eigenvectors.
We measured the performance of one-step-ahead forecasts and within-sample estimates by

means of the criteria
∑n

i=1(χ̂i,T+1|T − χi,T+1)
2

∑n
i=1

∑T
t=1 χ2

it/T
and

∑n
i=1

∑T
t=1(χ̂it − χit)

2

∑n
i=1

∑T
t=1 χ2

it

,

respectively. Results for models M1, M2, M3 and M4 are shown in Tables 5.1, 5.2, 5.3 and 5.4
respectively, with part (a) devoted to forecasts and part (b) devoted to within-sample estimation.
We report the average value of the criterion, along with its empirical standard deviation (in
brackets) across the 1000 replications, both for SW’s and for the two-step method.

Table 5.1a: Model M1, forecasting results

n = 20 n = 50 n = 100 n = 200
two-step SW two-step SW two-step SW two-step SW

0.9462 0.9492 0.9287 0.9325 0.9292 0.9323 0.9288 0.9321
T = 20 (1.2356) (1.1961) (1.2035) (1.1598) (1.2030) (1.1519) (1.1971) (1.1470)

0.8642 0.8606 0.8584 0.8529 0.8555 0.8486 0.8553 0.8488
T = 50 (1.1493) (1.1430) (1.1472) (1.1288) (1.1451) (1.1190) (1.1439) (1.1174)

0.7995 0.8018 0.7869 0.7881 0.7864 0.7864 0.7851 0.7818
T = 100 (1.0449) (1.0425) (1.034) (1.0294) (1.0321) (1.0288) (1.0326) (1.0256)

0.7833 0.7785 0.7753 0.7770 0.7731 0.7704 0.7721 0.7700
T = 200 (1.0723) (1.0698) (1.0584) (1.0486) (1.0576) (1.0541) (1.0577) (1.0554)
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Table 5.1b: Model M1, within-sample results

n = 20 n = 50 n = 100 n = 200
two-step SW two-step SW two-step SW two-step SW

0.1463 0.1759 0.1070 0.1139 0.0969 0.0969 0.0924 0.0888
T = 20 (0.1030) (0.1447) (0.0551) (0.0665) (0.0447) (0.0508) (0.0403) (0.0427)

0.0631 0.0878 0.0408 0.0506 0.0354 0.0399 0.0328 0.0345
T = 50 (0.0351) 0.0471 (0.0156) 0.0190 (0.0111) 0.0126 (0.0091) 0.0099

0.0413 0.0649 0.0225 0.0327 0.0182 0.0233 0.0161 0.0186
T = 100 (0.0232) (0.0299) (0.0075) (0.0097) (0.0046) (0.0057) (0.0034) (0.0039)

0.0313 0.0544 0.0143 0.0244 0.0103 0.0155 0.0085 0.0111
T = 200 (0.0181) (0.0225) (0.0044) (0.0058) (0.0022) (0.0028) (0.0014) (0.0016)

Table 5.2a: Model M2, forecasting results

n = 20 n = 50 n = 100 n = 200
two-step SW two-step SW two-step SW two-step SW

0.8901 0.9757 0.7773 0.8552 0.7227 0.7763 0.6911 0.7349
T = 20 (0.5266) (0.5423) (0.4790) (0.4851) (0.4276) (0.4422) (0.4132) (0.4255)

0.6514 0.7446 0.5025 0.5650 0.4613 0.4911 0.4412 0.4577
T = 50 (0.4360) (0.4793) (0.3446) (0.3692) (0.3165) (0.3251) (0.3078) (0.3130)

0.5385 0.6332 0.3944 0.4427 0.3552 0.3775 0.3402 0.3509
T = 100 (0.3844) (0.4284) (0.2895) (0.3015) (0.2692) (0.2736) (0.2645) (0.2689)

0.4949 0.5832 0.3660 0.4076 0.3278 0.3487 0.3127 0.3223
T = 200 (0.3367) (0.3702) (0.2852) (0.2896) (0.2694) (0.2733) (0.2673) (0.2693)

Table 5.2b: Model M2, within-sample results

n = 20 n = 50 n = 100 n = 200
two-step SW two-step SW two-step SW two-step SW

0.4587 0.7163 0.3683 0.5476 0.3290 0.4536 0.3057 0.3933
T = 20 (0.1523) (0.2457) (0.1049) (0.1705) (0.0836) (0.1340) (0.0708) (0.1075)

0.2838 0.5632 0.1827 0.3106 0.1496 0.2109 0.1340 0.1672
T = 50 (0.0751) (0.1536) (0.0347) (0.0759) (0.0235) (0.0430) (0.0180) (0.0284)

0.2154 0.4861 0.1238 0.2110 0.0931 0.1303 0.0788 0.0953
T = 100 (0.0525) (0.1234) (0.0207) (0.0435) (0.0120) (0.0205) (0.0081) (0.0122)

0.1842 0.4336 0.0921 0.1613 0.0613 0.0909 0.0471 0.0598
T = 200 (0.0448) (0.0998) (0.0157) (0.0279) (0.0076) (0.0117) (0.0042) (0.0059)

Table 5.3a: Model M3, forecasting results

n = 20 n = 50 n = 100 n = 200
two-step SW two-step SW two-step SW two-step SW

0.7644 0.8645 0.6680 0.7748 0.5713 0.6383 0.5292 0.5499
T = 20 (0.6472) (0.6793) (0.5975) (0.6102) (0.4619) (0.4517) (0.3919) (0.3522)

0.5273 0.5913 0.4636 0.4962 0.3565 0.3773 0.2792 0.2771
T = 50 (0.5886) (0.5993) (0.5620) (0.5393) (0.3770) (0.3601) (0.2355) (0.2139)

0.4482 0.4966 0.3935 0.4094 0.2873 0.2957 0.1958 0.1943
T = 100 (0.5312) (0.5367) (0.5136) (0.4806) (0.3470) (0.3210) (0.1758) (0.1678)

0.4131 0.4690 0.3493 0.3719 0.2488 0.2562 0.1521 0.1563
T = 200 (0.4779) (0.5099) (0.4213) (0.4275) (0.2826) (0.2793) (0.1440) (0.1435)
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Table 5.3b: Model M3, within-sample results

n = 20 n = 50 n = 100 n = 200
two-step SW two-step SW two-step SW two-step SW

0.4143 0.9583 0.3104 0.6670 0.2970 0.5440 0.3025 0.4505
T = 20 (0.2145) (0.4796) (0.1326) (0.2913) (0.1096) (0.2299) (0.0985) (0.1893)

0.2285 0.7279 0.1444 0.4083 0.1335 0.2753 0.1326 0.1856
T = 50 (0.0900) (0.2752) (0.0433) (0.1223) (0.0317) (0.0791) (0.0268) (0.0525)

0.1682 0.6468 0.0921 0.3176 0.0831 0.1839 0.0809 0.1044
T = 100 (0.0613) (0.2184) (0.0234) (0.0758) (0.0157) (0.0415) (0.0119) (0.0218)

0.1386 0.5959 0.0662 0.2646 0.0554 0.1344 0.0501 0.0647
T = 200 (0.0469) (0.1748) (0.0151) (0.0473) (0.0092) (0.0222) (0.0059) (0.0096)

Table 5.4a: Model M4, forecasting results

n = 20 n = 50 n = 100 n = 200
two-step SW two-step SW two-step SW two-step SW

0.7649 0.8531 0.6885 0.7820 0.5855 0.6424 0.5373 0.5395
T = 20 (0.6897) (0.7121) (0.6447) (0.6610) (0.5072) (0.4965) (0.4042) (0.3727)

0.5288 0.5692 0.4577 0.4886 0.3632 0.3759 0.2933 0.2746
T = 50 (0.5340) (0.5195) (0.4869) (0.4724) (0.3427) (0.3343) (0.2286) (0.1988)

0.4745 0.4919 0.4192 0.4184 0.3061 0.3025 0.2027 0.1908
T = 100 (0.5263) (0.5242) (0.5171) (0.4944) (0.3459) (0.3374) (0.1810) (0.1719)

0.4207 0.4390 0.3575 0.3595 0.2534 0.2496 0.1567 0.1509
T = 200 (0.4575) (0.4587) (0.4391) (0.4303) (0.2941) (0.2826) (0.1463) (0.1437)

Table 5.4b: Model M4, within-sample results

n = 20 n = 50 n = 100 n = 200
two-step SW two-step SW two-step SW two-step SW

0.3883 0.8443 0.3011 0.6068 0.2881 0.4920 0.2937 0.4084
T = 20 (0.1775) (0.3858) (0.1297) (0.2761) (0.1100) (0.2223) (0.1038) (0.1869)

0.2284 0.6099 0.1487 0.3566 0.1359 0.2404 0.1324 0.1668
T = 50 (0.0641) (0.1763) (0.0393) (0.0986) (0.0317) (0.0678) (0.0283) (0.0476)

0.1799 0.5217 0.1024 0.2685 0.0896 0.1586 0.0839 0.0949
T = 100 (0.0371) (0.1059) (0.0189) (0.0510) (0.0148) (0.0309) (0.0122) (0.0187)

0.1594 0.4734 0.0811 0.2216 0.0656 0.1172 0.0561 0.0611
T = 200 (0.0262) (0.0690) (0.0111) (0.0283) (0.0080) (0.0150) (0.0059) (0.0079)

The results can be summarized as follows.

(1) For model M1 the two competing methods yield similar performances for all n and T
(recall that this model, under which the unique factor is loaded only contemporaneously,
in principle is favorable to the SW method).

(2) The two-step method performs better than SW’s for models with heterogeneous dynamics,
i.e. M2, M3 and M4; in-sample estimation performances are considerably better.

(3) Homogeneity in the common/idiosyncratic variance ratio (M4 versus M3) somewhat re-
duces the advantage of the two-step method over SW’s, an advantage which nevertheless
remains quite significant. This is an indication that in these two models a substantial
gain is obtained simply from the estimation of the matrix used to project the χ’s on the
common factor space, whereas the advantage stemming from a better estimation of the
space itself is more modest.
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5.2 Some empirical results

D’Agostino and Giannone (2004) carry out an exhaustive comparison of the forecasting perfor-
mances of our two-step method, SW’s, and also some more standard ones. The exercise is based
on the monthly series in Stock and Watson (2002b) dataset, which includes 150 US macroeco-
nomic series, from 1959:1 to 1999:2 (so that T = 482). Such data are used to forecast two key
macroeconomic variables: industrial production (IP, in log levels) and inflation (twelve-month
log change of Consumer Price Index, CPI), by means of a simulated real-time forecasting ex-
ercise, i.e. by comparing actual and predicted figures as the models are estimated on the time
span [1, τ ], with τ running from τ0 (corresponding to 1969:1) to T −h; h is the forecast horizon.

In Table 5.5 we report some of their results. Like in simulations, we consider only prediction
of the common components, as though the idiosyncratic components were white noise. Since
the actual number r of static factors in real data obviously is unknown, we report results for r
running from 6 to 15. The number of dynamic factors is set equal to 2. The forecast horizons
are h =12 and 24 months, and the measure of performance used is (writing yt for the variable
to be predicted and ŷt+h|t for the corresponding h-step ahead forecast)

T−h
∑

τ=τ0

(ŷτ+h|τ − yτ+h)2
/

(T − h − τ0 + 1)

The best result for each variable and method is in bold type. The two-step method outperforms
SW, for any given r, except for IP with h = 12 and r = 6, 7, 8, 11. Comparing the minima,
two-step performs moderately better in all experiments. Both SW’s and our method perform
considerably better than AR based forecasts (the corresponding figures are not reported here,
but can be found in D’Agostino and Giannone 2004).

The same result, two-step outperforming SW’s method, is found in Gentile (2004) for Italian
data. Prediction of aggregate inflation and industrial production there is obtained by applying
the factor model to the panel of elementary price and production indexes respectively. The
techniques introduced in Boivin and Ng (2004) to select the “good” variables in the panel are
shown to produce considerable improvement.

Table 5.5: Mean square forecast errors for two-step and SW

log IP 100 × (1 − L12) log CPI

h = 12 h = 24 h = 12 h = 24

r two-step SW two-step SW two-step SW two-step SW

6 12.01 11.77 29.53 30.05 2.83 2.90 6.75 6.88
7 11.85 11.43 29.54 30.30 2.79 2.88 6.76 6.84

8 11.51 11.29 29.44 31.57 2.81 2.86 6.68 6.88
9 11.32 11.53 29.30 31.74 2.83 2.86 6.57 6.95
10 11.24 11.35 29.32 32.55 2.84 2.93 6.65 6.97
11 11.31 11.30 29.29 32.79 2.87 2.94 6.61 7.09
12 11.29 11.39 29.38 33.20 2.90 2.97 6.48 6.95
13 11.19 11.66 29.38 34.28 2.97 3.09 6.42 7.04
14 10.96 11.50 29.24 33.63 2.96 3.16 6.29 7.18
15 11.09 11.59 29.07 35.17 2.95 3.24 6.27 7.07
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6 Summary and conclusions

This paper proposes a new forecasting method that exploits information from a large panel
of time series. The method is based on the dynamic factor model proposed by Forni, Hallin,
Lippi, and Reichlin (2000) and proceeds in two steps. In the first step, we estimate the lagged
covariances of the common and idiosyncratic components using the frequency domain approach
proposed by Forni, Hallin, Lippi and Reichlin (2000). In the second step we use information
about the ‘degree of commonality’ of each variable to estimate the common factors and project
the variables to be predicted onto the linear space spanned by these factors. We show that
the projection converges to the optimal forecast as n and T go to infinity. Being a linear
combination of the x’s which does not involve future observations, the two-step predictor solves
the end-of-sample problems caused by two-sided filtering in the estimation method of Forni,
Hallin, Lippi and Reichlin (2000), while exploiting the advantages of dynamic information. Both
theoretical arguments and simulation results suggest that our predictor can provide a substantial
improvement over SW’s principal component predictor when the various cross-sectional items
differ significantly in the lag structure of the factor loadings, particularly if, in addition, there
is heterogeneity in the fraction of total variance explained by the idiosyncratic components.
Empirical exercises conducted so far are consistent with such arguments and results.

7 Appendix

We give here the proofs of Lemmas 7.1 and 7.2, used in the proof of Proposition 4.1, and of Lemma 4.2.

Lemma 7.1 Given the integer k > 0, consider a sequence of real, symmetric, positive semi-definite
n×n matrices ΓΓΓn and a sequence of real, symmetric, positive definite n×n matrices Dn, n = k, k+1, . . .
Assume that

(i) ΓΓΓn’s k-th largest eigenvalue µnk diverges as n → ∞, and
(ii) Dn’s largest eigenvalue is bounded from above by δ.

Then, the k-th largest generalized eigenvalue of (ΓΓΓn,Dn), νnk, diverges as n → ∞.

Proof. Let vnj , for j = 1, . . . , k − 1, be the generalized eigenvectors corresponding to the (k − 1)
generalized eigenvalues of the couple (ΓΓΓn,Dn), and let wnj , j = 1, . . . , k denote the standard (unit-
modulus) eigenvectors corresponding to the first k eigenvalues of ΓΓΓn. Let αn1, αn2, . . . , αnk be any
non-trivial solution of the linear system of k − 1 equations in the k unknowns yj

(y1wn1 + y2wn2 + · · · + ykwnk)Dnv′

nj = 0, j = 1, . . . , k − 1.

Define qn = αn1wn1 + αn2wn2 + · · · + αnkwnk. The vectors wnj are orthonormal, so that qn 6= 0.
Therefore, because Dn is positive definite, qnDnq′

n > 0. Thus, rescaling the α’s,

qnDnv′

nj = 0, j = 1, . . . , k − 1, and qnDnq′

n = 1 (7.1)

(for k = 1, (7.1) does not apply and we are just setting αn1 = 1/
√

wn1Dnw′

n1
). It follows from

Assumption (ii) and (7.1) that α2
n1 + α2

n2 + · · · + α2
nk ≥ 1

δ
. This and the definition of wnj imply that

qnΓΓΓnq′

n = α2
1µn1 + α2

n2µn2 + · · · + α2
nkµnk ≥

1

δ
µnk.

But, in view of (7.1), νnk ≥ qnΓΓΓnq′

n. The conclusion follows. QED

Lemma 7.2 Let Γ̌ΓΓ
χ

0 and Γ̌ΓΓ
ξ

0 be as in (4.3), µ̌χ
k and µ̌ξ

k being, respectively, their eigenvalues. Let r =
q(s + 1). Then, under Assumptions A, B, C and D,

(i) µ̌χ
r → ∞ as n → ∞;

(ii) µ̌ξ
1 is bounded for n → ∞.
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Proof. For any n-dimensional unit-modulus row vector v, we have

vΓ̌ΓΓ
ξ

0v
′ = v

[
∫ π

−π

Σ̌ΣΣ
ξ
(θ)dθ

]

v′ =

∫ π

−π

vΣ̌ΣΣ
ξ
(θ)v′dθ ≤

∫ π

−π

λq+1(θ)dθ = α, say.

We have (see Lancaster and Tismenetsky, 1985, p. 301, Theorem 1) λq+1(θ) ≤ λχ
q+1(θ) + λξ

1(θ). Thus,
since λχ

q+1(θ) = 0, Assumption C2 implies α ≤ 2πΛ. Part (ii) of the lemma follows. Obviously, C2

implies that vΓΓΓξ
0v

′ ≤ 2πΛ. Setting A = ΓΓΓξ
0 − Γ̌ΓΓ

ξ

0 and observing that vΓΓΓξ
0v

′ and vΓ̌ΓΓ
ξ

0v
′ are non-negative,

we obtain |vAv′| = |vΓΓΓξ
0v

′ − vΓ̌ΓΓ
ξ

0v
′| ≤ 2πΛ. Because

A =

∫ π

−π

(

ΣΣΣξ(θ) − Σ̌ΣΣ
ξ
(θ)

)

dθ =

∫ π

−π

(

Σ̌ΣΣ
χ
(θ) −ΣΣΣχ(θ)

)

dθ = Γ̌ΓΓ
χ

0 −ΓΓΓχ
0 ,

it follows that Γ̌ΓΓ
χ

0 +2πΛI = ΓΓΓχ
0 +[2πΛI+A]. Since the matrix in square brackets is positive semi-definite,

the result in Lancaster and Tismenetsky mentioned above implies that the eigenvalues of the sum on
the left-hand side are larger than or equal to the corresponding eigenvalues of ΓΓΓχ

0 . This entails that
µ̌χ

r + 2πΛ ≥ µχ
r ; part (i) of the lemma thus follows from Assumption D. QED

Proof of Lemma 4.2. Let v = (v1 · · · vk)′ and vn = (vn1 · · · vnk)′. With no loss of generality we can
suppose that v is orthonormal. Consider the decomposition

vn = anv + Rn, (7.2)

of vn into its (componentwise) orthogonal projection anv onto K and the orthogonal complement (an is
a k × k matrix). By assumption, Rn → 0 in quadratic mean, while the assumption var(vnj) = 1 implies
that an is bounded. Then consider the projection of v on Kn. It is easily seen that

v = a′

nvn + Sn. (7.3)

Taking covariances in (7.2) and (7.3), we obtain, in view of the orthonormality assumption on v and vn,
that Ik = ana′

n +ΓΓΓR
n , and Ik = a′

nan +ΓΓΓS
n , so that ana′

n +ΓΓΓR
n = a′

nan +ΓΓΓS
n . Taking traces on both sides

yields tr
(

ΓΓΓR
n

)

= tr
(

ΓΓΓS
n

)

. Thus, Sn → 0 in quadratic mean as n → ∞.

Decomposing similarly v into v = bnvn + sn = bnanv+bnRn + sn and v = bv+ s, where bnvn and
bv denote the orthogonal projections of v onto Kn and K, respectively (bn and b are 1 × k), we obtain

proj (v|Kn) − proj (v|K) = bnvn − bv = (bnan − b)v + bnRn = s − sn.

The assumption that var(vnj)=1 implies that bn is bounded. Hence, bnRn → 0 in quadratic mean, and

[(bnan − b)v − (s − sn)] −→ 0 (7.4)

in quadratic mean. Now, (7.3) and the fact that Sn → 0 imply that cov(v, sn) → 0. Since an and bn are
bounded, |cov((bnan − b)v, s − sn)| = |cov((bnan − b)v, sn)| → 0. This, combined with (7.4), implies
that limn→∞(bnan − b)v = limn→∞(s − sn) = 0. QED
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