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1.2 Stationary processes

In the previous section I have given for granted the definition of a stochastic vari-
able. Now I want to recall it, together with other definitions. Given a probability
space.˝;F ; P/, astochastic variable on.˝;F ; P/ is a functionx W ˝ ! R such
that, if H is any member of the Borel� -field onR, then

f! 2 ˝; x.!/ 2 H g 2 F :

The stochastic variablex induces on the Borel� -field the measure

�x.H / D P Œf!; x.!/ 2 H g�:

The measure�x is called thedistribution of x. Thedistribution function of x is
the functionFx W R ! R defined as

Fx.r/ D �.f!; x.!/ � rg/:

Generalization ton-dimensional stochastic vectors, their distribution as a measure
on the Borel� -field onRn, and their distribution function, which is defined onRn,
are obvious. The probability measures�t1;:::;tn , used in Section 1.1, are of course
distributions of stochastic vectors.

For any positive integerh, the h-th moment of the stochastic variablex on
.˝;F ; P/, is defined as

E.xh/ D
Z

˝

x.!/hdP.!/ D
Z

R
rhd�x.r/:

It can also be referred to as theh-th moment of the distribution�x .
Let us begin with the definition of a stationary process.

Definition 1.2 The processx D fxt ; t 2 Zg, defined on the probability space
.˝;F ; P/, is strongly stationary if

P Œ.xt1 ; xt2 ; : : : ; xtn/ 2 H � D P Œ.xt1Ck ; xt2Ck ; : : : ; xtnCk/ 2 H �;

for any integerst1 < t2 < � � � < tn andk, whereH is any measurable subset of
Rn, that is if

�t1;t2;:::;tn D �t1Ck;t2Ck;:::;tnCk :

Definition 1.2 obviously implies that�t does not depend ont . It does not
imply that�t1;t2 does not depend ont1 andt2. What it says is that if we translate
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the couple.t1; t2/ by any integerk the distribution does not change, i.e. that�t1;t2

depend only ont1 � t2.
Another obvious implication is that if, for a particular� , the variablex� has

finite first and second moment thenxt has finite first and second moment for all
t 2 Z, and that such moments are independent oft .

Exercise 1.3 Prove that if the stochastic variablex has finite second moment, i.e.
if Z

˝

x.!/2dP.!/ < 1;

then it has finite first moment. Hint: Note that̋ D f!; x.!/ � 1g [ f!; x.!/ >

1g and split the integral ofjxj.

Exercise 1.4 Let ˝ D Œ1 1/ and assume that the distribution has densityg.r/ D
ar�˛ . Of course˛ must be positive. But this is not sufficient to ensure thatR

˝
r�˛dr is finite. Give the condition on̨ in order that them-th moment of

the distribution be finite.

Let us review some processes and see whether they are strongly stationary or
not.

Example 1.5 Let xt be strongly stationary with finite second moment, and let
yt D a C bt C xt . Obviously the first moment ofyt depend ont , so thatyt is not
stationary. In the same way

zt D
(

˛ C xt if t � t0

ˇ C xt if t > t0,

with ˛ ¤ ˇ has not constant first moment, whilewt D t.xt � E.xt// has constant
first moment but varying second moment.

Example 1.6 Consider the processxt defined in Example 1.3. The first moment
is

E.xt/ D E.a/ cos� t C E.b/ sin� t;

which is not constant unlessE.a/ D E.b/ D 0, or � D 0. The second moment is

E.x2
t / D E.a2/ cos2 � t C E.b2/ sin2 � t C E.ab/ cos� t sin� t:

Assuming that

E.a/ D E.b/ D 0; E.a2/ D E.b2/; E.ab/ D 0; (1.7)
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first and second moment are independent oft . Moreover, as is easily proved,

E.xt xt�k/ D E.a2/ cos�k;

and is therefore independent oft . This is sufficient for weak stationarity (see Def-
inition 1.3 below) but not for strong stationarity. For example, taking� D � and
assuming thata has finite third moment, the third moment ofxt is E.a3/.�1/t ,
which is time-varying unlessE.a3/ D 0. In general, even enhancing (1.7) by
assuming independence ofa andb, theh-th moment,h > 2, of xt can be time-
varying (check).

Example 1.7 In the process defined in Example 1.4 assume conditions (1.7) and
that� is independent ofa andb. Note that in this case

E.xt xt�k/ D E.a2/E.cos�k/:

Note that if� is uniformly distributed inŒ�� �� then

E.xtxt�k/ D 0

for k ¤ 0. Considerations analogous to those of Example 1.6, regarding strong
stationarity, apply here.

Example 1.8 The tossing-coinprocess defined in Example 1.1 is obviouslystrongly
stationary. Finite moving averages of the tossing-coin process are strongly station-
ary. The infinite moving average (1.6) is strongly stationary.

Example 1.9 Finite moving averages of a strongly stationary process are strongly
stationary.

Irrespectively of whether the processx is stationary or not, if the second mo-
ment ofxt1 andxt2 are finite then the expectation of the productxt1xt2 is finite.
For,

ˇ̌
ˇ̌
Z

˝

xt1 .!/xt2.!/dP.!/

ˇ̌
ˇ̌ �

sZ

˝

xt1 .!/2dP.!/

sZ

˝

xt2.!/2dP.!/;

or,

ˇ̌
ˇ̌
Z

R
r1r2d�t1;t2.r1; r2/

ˇ̌
ˇ̌ �

sZ

R
r2
1

d�t1;t2 .r1; t2/

sZ

R
r2
2

d�t1;t2.r1; t2/

D

sZ

R
r2d�t1.r/

sZ

R
r2d�t2 .r/
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(this is one of the forms taken by the Cauchy-Schwartz inequality; see Section
1.3.9 below). If the second moment ofxt is finite for all t , then obviously the
meanE.xt /, the variance var.xt/ D EŒ.xt � E.xt /

2� D E.x2
t / � E.xt/

2 and the
covariance cov.xt1 ; xt2/ D EŒ.xt1 � E.xt1 //.xt2 � E.xt2 //� are finite for allt , t1
andt2.

Definition 1.3 The processfxt ; t 2 Zg is weakly stationary if (1) the second
moment ofxt is finite for all t , (2) the first moment ofxt is independent oft ,
(3) the cross momentE.xt1xt2 / depends only ont1 � t2, this implying that the
second moment ofxt is independent oft .

Given a weakly stationary processxt , the function
 W Z ! R, defined as

k D cov.xt ; xt�k/ is calledautocovariance function . Since
k D 
�k (an easy
consequence of weak stationarity), the autocovariance function is usually plotted
only for k � 0. Note that strong stationarity implies weak stationarity, but only
under the assumption that the second moment ofxt is finite for all t .

Observation 1.1 Obviously constancy of second moments does not imply con-
stant distributions, so that weak stationarity does not imply strong stationarity. See
Examples 1.6 and 1.7.

These Lecture Notes, as well as many books on stationary processes, concen-
trate on weak stationarity. This does not mean that we are particularly interested in
processes that are weakly but not strongly stationary. Rather, we are interested in
those properties of stationary processes that depend only on their first and second
moments (provided that they are finite of course).

The variables belonging to a weakly stationary process are members of the
spaceL2.˝;F ; P/, the space of square integrable functions. Analysis of this and
other infinite-dimensional spaces will be the subject of a fairly long mathematical
section.

Summary.The well-known definitions of strongly and weakly stationary processes
have been recalled. Strong implies weak stationarity if the second moments are
finite. These Lectures concentrate on weakly stationary processes, that is on those
properties of stationary processes, with finite second moments, that depend only
on second moments.


