
Prediction of stationary processes: general ideas and definitions

In Rome, Monte Mario, we have a Weather Station, that is a facility with instruments

to make observations of atmospheric conditions, including temperature, barometric

pressure, humidity, wind speed, wind direction, and precipitation amounts. Let us

concentrate on temperature.

Two technicians, A and B, are in charge for analyzing the temperature data and

making forecasts.

A says that in his experience the formula

x̂A
t+1 = 0.9xt − .6(xt − xt−1)

performs fairly well.
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A says that in his experience the formula

x̂A
t+1 = 0.9xt − .6(xt − xt−1)

performs fairly well.

B has a different opinion. She maintains that the influence of the current-day's

temperature is weaker, she uses a coefficient of 0.7, and that the change between

current-day's and previous-day's temperature has a positive, though small, effect:

x̂B
t+1 = 0.7xt + .2(xt − xt−1)
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Both solutions

x̂A
t+1 = 0.9xt − .6(xt − xt−1)

x̂B
t+1 = 0.7xt + .2(xt − xt−1)

are rules, i.e. functions, that associate a predicted value with observed values of

the temperature.

In general a predictor is

x̂f
t = f (xt−1, xt−2, . . .)

that is x̂f
t is a stochastic process which is a function of

xt−1, xt−2, . . .
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Thus in principle we have as many predictors of xt as many functions. Our task

is to select a predictor that is optimal.

But to define optimality we need a criterion. For example:

a. Minimize the absolute value of xt − x̂f
t , which is called prediction error. More

precisely, minimize the expected value of the absolute prediction error

E(|xt − x̂f
t |)

b. Minimize

E(xt − x̂f
t )

2
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Our criterion will be the second:

min E
(

xt − x̂f
t

)2

But minimum with respect to what?

The answer is

min
f

E
(

xt − x̂f
t

)2

So we are seeking an element in the set of all functions, such that the expected

squared error is minimum. This is a huge set to explore!
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Now we can pay a second visit to the Weather Station and give advice. We say

to technicians A and B that their methods seem no more than rules of thumb, and

that they should find a common rule by optimizing with respect to some criterion.

They respond that the squared error criterion seems good, but that they are not

able to determine the best function f . They feel unequal to the complexity of the

problem.

We suggest that they simplify the problem by restricting the set of functions. Pre-

cisely, we propose linear functions:

a0 + a1xt−1 + a2xt−2 + · · ·

Now the problem becomes

min
a0,a1,a2,...

E [xt − (a0 + a1xt−1 + a2xt−2 + · · · )]2
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We propose linear functions:

a0 + a1xt−1 + a2xt−2 + · · ·

The problem becomes

min
a0,a1,a2,...

E [xt − (a0 + a1xt−1 + a2xt−2 + · · · )]2

This can be restated like this:

xt = [a0 + a1xt−1 + a2xt−2 + · · · ] + et

We look for the coefficients aj such that

E(e2
t ) is minimum

and this looks very much like a linear regression of xt on its lags.



Projections and minimum distance

Consider the stochastic variable y and z. We want the best linear approximation

of y by means of z, that is

y = az + e

where a is such that

E(e2) =E(y − az)2

is minimum. Set to zero the derivative with respect to a

d

da

[

E(y2) + a2E(z2) − 2aE(yz)
]

= 2aE(z2) − 2E(yz) = 0

and you obtain

a =
E(yz)

E(z2)
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Now consider again y and z. We want to find the number b such that

e = y − bz

is orthogonal to z, orthogonality between the stochatic variables w1 and w2 mean-

ing that the moment E(w1w2) is equal to zero. We find that

E(ez) =E(yz) − bE(z2)

which implies

b =
E(yz)

E(z2)

which is equal to a.



Projections and minimum distance

P(A)

A

BV

The point P (A) is: (1) the point on the line V whose distance from A is minimum,

(2) the point obtained by orthogonally projecting A on V . You see that as soon as

you move away from P (A), like in B, you loose both properties.
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In general, if

e = y − (a0 + a1z1 + · · · + arzr),

the coefficients that give

min E(e2) (Minimum distance)

satisfy

e ⊥ zj, j = 1, 2, . . . , r, and E(e) = 0 (Orthogonal projection)

Note that E(e) = 0 means that e is orthogonal to the stochastic variable that is

equal to unity with certainty: E(e1) = 0.
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Rewriting the problem as

y = a0 + a1z1 + · · · + arzr + e that is y = (a0 a1 · · · ar)
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the solution is (a0 a1 · · · ar) = Y C−1, where

Y = E [y (1 z1 z2 · · · zr)] , C = E
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(C is the variance-covariance matrix)
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The following statement insists on uniqueness of projection and residual. Suppose

that

y = p + ε

where (1) ε is orthogonal to 1, z1, z2, . . . , zr, (2) p is a linear combination of

1, z1, z2, . . . , zr. Then p and ε are the projection and the residual respectively.

To prove uniqueness just go back to the matrices Y and C and observe that we

can assume that the variables 1, z1, z2, . . . , zr have a non-singular covariance

matrix.
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In empirical situations we do not know the covariances in C and in Y . We observe

data that are drawn from the distributions of y and the zj's. These data are used

to estimate the covariances and therefore the coefficients ah.

For example, the equation is y = az + e, and we have observations

y1, y2, . . . , yN , z1, z2, . . . , zN

The covariances E(yz) and E(z2) are estimated by

σ̂yz =
1

N

N
∑

h=1
yhzh, σ̂2

z =
1

N

N
∑

h=1
z2
h, and â =

σ̂yz

σ̂2
z

This your familiar least squares estimation.
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Now back to our problem:

xt = [a0 + a1xt−1 + a2xt−2 + · · · ] + et

Adopt the simplification

xt = [a0 + a1xt−1 + a2xt−2 + · · · + asxt−s] + et

where et is orthogonal to the regressors.

Note that we are using coefficients that are independent of t. But the coefficients

depend on the covariances E(xtxt−k). Thus, assuming that the coefficients are

time-invariant requires that the covariances are time-invariant, i.e. that xt is weakly

stationary.
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Discussion: Is temperature stationary? Would you accept that E(xt) is the same

in January and August? I would not. In this case a model could be

xt = St + ηt

where St is a non-stochastic function of t, accounting for the seasonal component,

while ηt is zero-mean and weakly stationary.

This introduces the general consideration that the theory of stationary processes

may require (most often does require), to be applied, that we reduce to stationarity

our data. Examples: the price index Pt is not stationary, but its rate of variation

Pt − Pt−1

Pt−1

is stationary. The same holds for the GDP.
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Now back to our problem:

xt = [a0 + a1xt−1 + a2xt−2 + · · · ] + et

What is a regression on an infinite number of regressors? Consider the regression

xt = [a
(r)
0 + a

(r)
1 xt−1 + a

(r)
2 xt−2 + · · · + a(r)

s xt−r] + e
(r)
t = p

(r)
t + e

(r)
t .

It is possible to prove that as r → ∞

p
(r)
t → pt, e

(r)
t → et

where et is orthogonal to all the infinite regressors 1, xt−1, . . .

Of course in empirical situations, in which only a sample for t = 1, 2, . . . , T

is available, we will estimate a regression on a finite number r of lags, with r

determined by some information criterion.
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In conclusion, the best linear predictor of xt, based on its past, is the projection pt:

xt = pt + et = [a0 + a1xt−1 + a2xt−2 + · · · ] + et

The process et, that is the one-step-ahead prediction error, is also called the inno-

vation of the process xt.

Looking at the projection equation, the term innovation seems quite appropriate.

The only reason why the process xt is not completely determined by its past values

is the presence of the term et.

A very important result is that the process et is a white noise.

Proof. We have

et = xt − [a0 + a1xt−1 + a2xt−2 + · · · ]

thus et is weakly stationary.
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Again

et = xt − [a0 + a1xt−1 + a2xt−2 + · · · ]

Remember that et is orthogonal to 1, xt−1, xt−2, . . . But

et−1 = xt−1 − [a0 + a1xt−2 + a2xt−3 + · · · ]

so that et is orthogonal to et−1, etc.

An intuition of the result may be also obtained as follows. Suppose that et were

not a white noise. For example, the autocovariance γe
1 6= 0. Then in the projection

et = αet−1 + εt, the coefficient α is not zero, this implying that E(ε2t ) < E(e2
t ).

Now

xt = [a0 + a1xt−1 + a2xt−2 + · · · ] + et = xt = pt + et = [a0 + a1xt−1 + a2xt−2 + · · · ] + αet−1 + εt

= [a0(1 − α) + (a1 + α)xt−1 + (a2 − αa1)xt−2 + · · · ] + εt

But this contradicts the assumption that et is the residual of the projection of xt on

its past.
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Stop for an observation. If y and z are orthogonal then the Pythagorean Theorem

holds:

E(y + x)2 = E(y2)+E(z2)

This is immediately seen computing the left hand side.

Then of course

E(x2
t ) =E(p2

t )+E(e2
t )

so that E(e2
t ) ≤E(x2

t ), equality holding if and only if pt = 0, or xt = et.

Back to our problem. So et = xt− [a0 +a1xt−1 +a2xt−2 + · · · ] is a white noise.

On the other hand, xt = et if and only if xt is a white noise (prove this statement).

Therefore a white noise is unpredictable. Better, we can say that stationary pro-

cesses are predictable in that the pattern of autocorrelation is constant through

time. A white noise is the least predictable among stationary processes. Processes

whose autocorrelation is not regular through time are absolutely unpredictable.
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Examples:

1. xt = A. In this case the projection equation is

xt = xt−1 + 0

but also xt = xt−2 + 0, etc. Thus the innovation is zero. Do not say that there is

no innovation, or, say it if you want, but remember what you mean.

2. xt = (−1)tA. Same as in the previous case, only that here the projection is

xt = −xt−1 + 0 = xt−2 + 0, etc. Zero innovation.
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3. The AR(1) process, that is the stationary solution of zt = αzt−1 + ut, |α| < 1,

which is

xt = ut + αut−1 + α2ut−2 + · · ·

In this case, using the definition of xt, firstly

ut ⊥ xt−k = ut−k + αut−k−1 + α2ut−k−2 + · · ·

for k ≥ 1. Secondly αxt−1 is a linear combination of past values of xt (too

obvious). So

xt = pt + et = αxt−1 + ut

This means that the best linear prediction of xt is αxt−1.
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4. The MA(1) process xt = ut − βut−1. Obviously

ut ⊥ xt−k = ut−k − βut−k−1

for k ≥ 1. Assume that |β| < 1. Then, by the same recursive argument used to

solve the AR(1) process,

ut = xt + βxt−1 + β2xt−2 + · · ·

Thus −βut−1 is a linear combination of past values of xt, so that

xt = pt + et = −βut−1 + ut

The best linear prediction of xt is

−βut−1 = −β[xt−1 + βxt−2 + · · · ]

The case |β| > 1 will be discussed later on.
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5. The ARMA(p,q) case a(L)zt = b(L)ut, whose stationary solution is

xt = a(L)−1b(L)ut = ut + A1ut−1 + A2ut−2 + · · ·

This implies that ut ⊥ xt−k for k ≥ 1. If the roots of b(L) are larger than unity

in modulus (invertibility), then

ut = b(L)−1a(L)xt

so that ut is a linear combination of xt, xt−1, · · · . In that case the projection

equation is

xt = pt + et = [α1xt−1 + · · · + αpxt−p + β1ut−1 + · · · + βqut−q] + ut

In conclusion, if the stationarity and invertibility conditions are satisfied, ut is the

innovation of the ARMA process a(L)zt = b(L)ut.



The Wold Representation Theorem. The Innovation of a stationary process

Back to the regression

xt = [a0 + a1xt−1 + a2xt−2 + · · · ] + et (∗)

Thus, as we have observed, xt is determined by its past plus the innovation et.

Using

xt−1 = [a0 + a1xt−2 + a2xt−3 + · · · ] + et−1

to replace xt−1 in (∗), we obtain

xt = et + b1et−1 + [f + f2xt−2 + f3xt−3 + · · · ]

We may hope that iterating the procedure we obtain a result like the one obtained

in the AR(1) case:

xt = b + et + b1et−1 + b2et−2 + · · ·
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We may hope that iterating the procedure we obtain a result like the one obtained

in the AR(1) case:

xt = b + et + b1et−1 + b2et−2 + · · ·

This is not true in general, as the example xt = A shows.

The intuition based on the iterative procedure can be given a rigorous version by

projecting xt on 1, et, et−1, . . .

xt = [b + b0et + b1et−1 + b2et−2 + · · · ] + dt

Show that b0 = 1 (use xt = [a0 + a1xt−1 + a2xt−2 + · · · ] + et) so that the

projection is

xt = [b + et + b1et−1 + b2et−2 + · · · ] + dt

This is called the Wold representation of xt.
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The Wold Representation Theorem states that a weakly stationary process xt has

the representation

xt = [b + et + b1et−1 + b2et−2 + · · · ] + dt

where et is the innovation of xt, while dt is a process with zero innovation, i.e.

dt = D1dt−1 + D2dt−2 + · · ·

Moreover, dt is orthogonal to es, for all s.

Processes like dt, with zero innovation, are called linearly deterministic.

In conclusion, a weakly stationary process is the sum of a backward moving aver-

age of the innovation, which is a white noise, plus a linearly deterministic process.

The two components are orthogonal at all leads and lags.
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We have seen that ARMA processes have a Wold representation without the de-

terministic component:

xt = a(L)−1b(L)ut

On the opposite side, xt = A has only the deterministic component.

The following is an interesting exercise

xt = ut + A

where ut is white noise and ut ⊥ A for all t. Both A and ut are zero mean.

Prove that ut is the innovation of xt and A the deterministic component.

Consider the regression

xt = a
(r)
1 xt−1 + a

(r)
2 xt−2 + · · · + a(r)

r xt−r + e
(r)
t
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Consider the regression

xt = a
(r)
1 xt−1 + a

(r)
2 xt−2 + · · · + a(r)

r xt−r + e
(r)
t

Using the fact that

γx
k =















σ2
u + σ2

A if k = 0

σ2
A if k 6= 0

we obtain that the coefficients a
(r)
h are all equal. Thus the regression is

xt = a(r)[xt−1 + xt−2 + · · · + xt−r] + e
(r)
t

that is

et + A = a(r)[ut−1 + ut−2 + · · · + ut−r] + a(r)rA + u
(r)
t



The Wold Representation Theorem. The Innovation of a stationary process

Rewrite the last display

ut + A = a(r)[ut−1 + ut−2 + · · · + ut−r] + a(r)rA + e
(r)
t

Using

e
(r)
t = ut + A − a(r)[ut−1 + ut−2 + · · · + ut−r] − a(r)rA

and orthogonality of e
(r)
t to xt−1 = ut−1 + A, we obtain

a(r) =
σ2

A

σ2
u + rσ2

A

that is

xt = p
(r)
t +e

(r)
t =


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

σ2
A

σ2
u + rσ2

A

[ut−1 + ut−2 + · · · + ut−r] +
rσ2

A

σ2
u + rσ2

A

A
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t
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Rewrite

xt = A+ut = p
(r)
t +e

(r)
t =


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
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u + rσ2
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rσ2
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As r → ∞

p
(r)
t → A, e

(r)
t → ut

that is

E(A − p
(r)
t )2 → 0, E(ut − e

(r)
t )2 → 0

We have to prove that

E
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In conclusion, as p
(r)
t → pt = A,

xt = pt + et = A + ut

The white noise ut is the innovation. Of course the projection of xt = ut + A on

present and past values of the innovation is ut, so that the Wold representation is

xt = [ut + b1ut−1 + · · · ] + dt = ut + A

The result looks trivial, but obtaining it requires some work.
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Now consider again the MA(1) process

xt = ut − βut−1

In order to prove that ut is the innovation of xt we argue that

(1) ut ⊥ xt−k for k ≥ 1

(2) ut is a linear combination of xt, xt−1, . . .

To prove (2)

ut = xt + βxt−1 + β2xt−2 + · · ·

But this requires that |β| < 1. What if |β| > 1 ?
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Rewrite the MA(1) as

xt = (1 − βL)ut

We know the trick to obtain ut as a moving average of the x's.

ut =
1

1 − βL
xt =

−β−1F

1 − β−1F
xt = −β−1[xt+1 + β−1xt+2 + β−2

t+3 + . . . ]

Thus when |β| > 1, ut is a linear combination of future values of xt and is not

the innovation of xt.
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To find the innovation of xt = (1 − βL)ut, for |β| > 1, we use the following

statement. There exists a white noise vt such that

xt = (1 − βL)ut = (1 − β−1L)vt

Then vt is the innovation of xt.

Determining vt is easy

vt = 1 − βL
1 − β−1L

ut = (1 − βL)(1 + β−1L + β−2L2 + · · · )ut

= [1 + (β−1 − β)L + β−1(β−1 − β)L2 + β−2(β−1 − β)L3 + · · · ]ut

But we have to prove the vt, though being a moving average of a white noise, is

a white noise. This is an interesting exercise, requiring only sums of geometric

series. Note that vt is an infinite moving average. A finite moving average of a

white noise cannot be a white noise.
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Consider now the case β = 1:

xt = ut − ut−1

We can prove that ut is the innovation of xt (not very difficult).

An important observation. Consider the regression

xt = p
(r)
t + u

(r)
t = a

(r)
1 xt−1 + a

(r)
2 xt−2 + · · · + a(r)

r xt−r + e
(r)
t

In this case, although

p
(r)
t → pt = −ut−1

the projection cannot be represented as

xt = pt + ut = [a1xt−1 + a2xt−2 + · · · ] + ut

The reason is that the polynomial 1−L is not invertible, so that all the coefficients

a
(r)
2 tend to 1.
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Rewrite:

In this case, although

p
(r)
t → pt = −ut−1

the projection cannot be represented as

xt = pt + ut = [a1xt−1 + a2xt−2 + · · · ] + ut

The reason is that the polynomial 1−L is not invertible, so that all the coefficients

a
(r)
2 tend to 1.

Therefore, though convenient, writing

xt = a
(r)
1 xt−1 +a

(r)
2 xt−2 + · · ·+a(r)

r xt−r +e
(r)
t = [a1xt−1 +a2xt−2 + · · · ]+et

is not completely rigorous. If xt is a moving average we must add the assumption

that no root has unit modulus.
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Given the ARMA

a(L)xt = b(L)ut = ut + β1ut−1 + · · · + βqut−q

= (1 − δ1L)(1 − δ2L) · · · (1 − δqL)ut
(∗)

we can apply the technique shown above for the MA(1) to replace all the roots δj
whose modulus is smaller than 1 with their reciprocals. Thus given an MA(q), this

can be transformed into an invertible MA(q).

As we have seen, if b(L) is invertible, i.e. if the roots of b(L) lie outside of the

unit circle, then ut is the innovation of xt. We also say that ut is fundamental for

xt or that representation (∗) is a fundamental representation for xt.

For example, xt = ut − 2ut−1 is not fundamental, but we know that xt has also

the representation xt = vt − 0.5vt−1, which is fundamental.
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If our aim is prediction, then only fundamental representations are important. How-

ever, non fundamental representations may arise in structural analysis. Consider

the following stylized example.

The variable xt is the quarterly rate of change of aggregate productivity

The white noise ut is a shock to technical knowledge.

The shock to technical knowledge takes two quarters to be completely absorbed

by a change in productivity:

xt = a0ut + a1ut−1, a0 + a1 = 1

xt = wt + αwt−1, wt = a0ut, α = a1/a0

The shock ut is fundamental for xt if and only if a0 > a1. But this is not neces-

sarily true. If the coefficients aj represent a learning-by-doing process, or diffusion

of technical innovations among firms, then why should the first impact be more

important than the lagged effect?
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Rewrite the display:

xt = a0ut + a1ut−1, a0 + a1 = 1

xt = wt + αwt−1, wt = a0ut, α = a1/a0

The shock ut is fundamental for xt if and only if a0 > a1. But this is not neces-

sarily true. If the coefficients aj represent a learning-by-doing process, or diffusion

of technical innovations among firms, then why should the first impact be more

important than the lagged effect?

Now, if the econometrician only observes xt, the rate of change of productivity,

he/she is not able to choose which MA(1) representation is the structural repre-

sentation, the fundamental or the other. This identification problem is know as

the fundamentalness problem. But if you are interested only in prediction then no

identification problem arises. You just choose the fundamental representation.



The Wold Representation Theorem. The Innovation of a stationary process

Summing up, every stationary process has the representation

xt = [b + et + b1et−1 + b2et−2 + · · · ] + dt

where dt is predictable without error using its past values.

ARMA processes do not contain the term dt.

Can we say that only processes without dt are interesting for economists? Yes

and no.



The Wold Representation Theorem. The Innovation of a stationary process

Remember the space of trajectories? Consider R
Z and the four trajectories

· · · 1 2 3 4 5 6 7 8 · · ·

· · · 1 0 0 0 1 0 0 0 · · ·

· · · 0 1 0 0 0 1 0 0 · · ·

· · · 0 0 1 0 0 0 1 0 · · ·

· · · 0 0 0 1 0 0 0 1 · · ·

time

g1

g2

g3

g4

Interpret time as quarters. The trajectories gj represent an event occurring every

year in the j-th quarter. Now, the probability space Ω is R
Z with probability 1/4

assigned to each of the trajectories gj, and zero for the set of all other trajectories.

Lastly, define the stochastic process

dt(gj) = gj,t

and call dt the Independence Day process.



The Wold Representation Theorem. The Innovation of a stationary process

Interpretation. Many years ago, a war has been fought for independence of our

country. The decisive battle took place in the first quarter, so ever since we cel-

ebrate the day of that battle. This is why the number of working days in the first

quarter must be corrected to take the Independence Day into account. But that

battle might have been fought in a different quarter, or maybe it was decided that

that battle has been decisive against the opinion that another was the most impor-

tant. This is why we interpret Independence Day as a stochastic process: it might

have been different. (With a different outcome of the battle there would not be an

Independence Day.)

Remember that linearly deterministic processes do not look like stochastic pro-

cesses. Remember xt = A, or xt = (−1)t, or, now, the Independence Day

process. This point will be touched upon again when talking of estimation.
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Usually, effects due to special celebrations like Independence Day, Easter, Christ-

mas, etc. are removed from economic time series within preliminary analysis.

Preliminary analysis should also remove:

(1) Outliers, that is values of the time series that are likely not to belong to the

stationary distribution, like an earthquake, or a very important strike, etc.

(2) Seasonal components, i.e. sizable oscillations in output, hour worked, etc., that

are due to atmospheric variations and are not interesting from an economic point

of view. Italian industrial production falls dramatically in August, but this has no

economic meaning.

(3) Trend. This will be dealt with later on.



The Wold Representation Theorem. The Innovation of a stationary process

In conclusion, after preliminary analysis we can say that the Wold Representation

of an economic time series is

xt = b + et + b1et−1 + b2et−2 + · · ·

where et is the innovation of xt.



Prediction of ARMA processes

Given the ARMA

a(L)xt = b(L)ut

with all the roots in the right place, we have seen that the projection equation is

xt = pt + et = [α1xt−1 + · · · + αpxt−p + β1ut−1 + · · · + βqut−q] + ut

Now, replacing xt−1 we obtain

xt =
[

(α2
1 + α2)xt−2 + · · · + α1αpxt−p−1 + (α1β1 + β2)ut−2 + · · · + α1βqut−q−1

]

+[ut + (α1 + β1)ut−1]

This is the projection of xt on the space spanned by xt−2, xt−3, . . .. You see

that the two-step-ahead prediction error is no longer a white noise (the argument

used proving the Wold Theorem does not apply here; are you convinced?). Further

replacements provide the h-step-ahead prediction error for all h.



Prediction of stationary processes

A more general way to analyze the h-step-ahead prediction error is the following.

Consider the Wold representation

xt+h = b + et+h + b1et+h−1 + b2et+h−2 + · · ·

Rewrite this as

xt+h = [et+h+b1et+h−1+· · ·+bh−1et+1]+[b+bhet+bh+1et−1+· · · ] = et+h|t+pt+h|t

Since et = xt − (a0 + a1xt−1 + a2xt−2 + · · · ), then et belongs to the

space spanned by 1, xt, xt−1, xt−2, . . .. On the other hand, since xt =

b + et + b1et−1 + a2et−2 + · · · , then xt belongs to he space spanned by

1, et, et−1, et−2, . . . so that the two spaces coincide. Thus pt+h|t and et+h|t are

the projection of xt+h on the space spanned by 1, xt, xt−1, . . . and the residual

respectively.



Prediction of stationary processes

xt+h = [et+h+b1et+h−1+· · ·+bh−1et+1]+[b+bhet+bh+1et−1+· · · ] = et+h|t+pt+h|t

This also shows that as h → ∞,

pt+h|t → b, et+h|t − (xt+h − b) → 0

This implies that the variance of the prediction error has a finite bound as h → ∞,

namely σ2
x.
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Prediction of stationary processes

The plot has

xt = 0.8xt−1 + ut

between 1 and 100, followed by 30 predicted values (red circled).
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Prediction of stationary processes

The plot has

xt = 1.4xt−1 − 0.66xt−2 + ut

between 1 and 100, followed by 30 predicted values (red circled). The roots of the

polynomial 1 − 1.4L + 0.66L2 are complex:

r = 0.9



cos
2π

12
± i sin

2π

12


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Prediction of stationary processes

The plot has

xt = ut − 0.7ut−1 − 0.33ut−2 + 0.46ut−3

between 1 and 100, followed by 30 predicted values (red circled). The roots of the

polynomial 1− 0.7L− 0.33L2 + 0.46L3 are all outside the unit circle. Note that

all predicted values after the third are zero, consistently with

xt = [et+b1et−1+· · ·+bh−1et−h+1]+[bhet−h+bh+1et−h−1+· · · ] = et+h|t+pt+h|t



Prediction of stationary processes

Rewrite

xt+h = [et+h+b1et+h−1+· · ·+bh−1et+1]+[b+bhet+bh+1et−1+· · · ] = et+h|t+pt+h|t

Remember that the space spanned by et, et−1, et−2, . . . and the space spanned

by xt, xt−1, xt−2, . . . coincide. Thus

pt+h|t = ah
hxt + ah

h+1xt−1 + · · ·

Also

xt+h = [ah
hxt+ah

h+1xt−1+· · · ]+et+h|t = [ah
hxt+ah

h+1xt−1+· · · ]+[et+h+b1et+h−1+· · ·+bh−1et+1]

If et and es are independent for t 6= s, white noise in the strict sense, then et and

xt−k, for k > 0 are independent. As a consequence ah
hxt + ah

h+1xt−1 + · · · is

the conditional expectation of xt+h, given xt, xt−1, · · · .

Conditional expectation is often used for ah
hxt + ah

h+1xt−1 + · · · even without

assuming that et is white noise in the strict sense.



Prediction of stationary processes

Consider the following example

xt = ut + βut−1ut−2

where |β| < 1 and ut is white noise in the strict sense. A simple exercise shows

that xt is a white noise, i.e. it has zero mean and zero autocovariances γx
k for

k 6= 0. Thus

xt+h|t = 0

for all h > 0.

However, it is possible to prove that ut can be recovered as limit of non-linear

functions of xt, xt−1, . . . Therefore, the best prediction of xt+1, based on

xt, xt−1, . . ., is βutut−1, not 0. Thus the non-linear prediction has a smaller

prediction error compared with that of the linear prediction. In other words, there

is something you can learn about xt+1 if you consider non-linear combinations of

xt, xt−1, . . ., is βutut−1.



Prediction of stationary processes

Rewrite

xt = ut + βut−1ut−2 = ut + G(xt−1, xt−2, . . .)

Since ut is independent of xt−k, k > 0, then βut−1ut−2 = G(xt−1, xt−2, . . .)

is the conditional expectation of xt given past values of xt.

This is a particular case of a general theorem: given the stochastic process xt,

the best prediction of xt, given xt−k, k > 0, with respect to the minimum mean

square error criterion, is the conditional expectation of xt, given xt−k, k > 0.

As observed above, if xt is stationary with one-step-ahead prediction error et,

then if et is white noise in the strict sense, the best prediction and the best linear

prediction of xt coincide. Thus the conditional expectation of xt+h given xt−k,

k ≥ 0, is a linear combination of xt, xt−1, . . .


