
Non-stationary processes

Examples:

1. Let xt be a zero-mean stationary process and

yt = a + bt + xt

This process is called Trend Stationary, TS.

2. Let xt be a zero-mean stationary process and yt be a solution of

yt = b + yt−1 + xt

This process is called Difference Stationary, DS. An additional condition for the

definition of DS processes will be specified below.

With a TS process we run a regression of yt on 1 and t and analyze the residual

using the theory of stationary processes.

With a DS process we apply the theory of stationary processes to

yt − yt−1 = (1 − L)yt = b + xt



Non-stationary processes

Remember that non-stationarity does not mean necessarily that the process has a

trend. This process

yt =















xt if t ≤ 0

1 + xt if t > 0

represents a regime-change (the mean suddenly changes at t = 0).



Non-stationary processes

Analysis of the TS process is elementary. Here the source of non stationarity

is a deterministic function of time which has no relationship with the stationary

component. Trend and cycle do not interact.

The prediction of the TS process is

yt+h|t = a + b(t + h) + xt+h|t

Since xt+h|t → 0 as h → ∞, the long-run prediction of yt+h is

a + b(t + h)
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95

Prediction of the TS process with xt driven by (1 − 1.4L + 0.66L2)zt = ut.

The blue line has some of the values of yt, up to t = 95. The green line has 40

predicted values. You see how predicted values approach the trend as h increases.
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95

We can write

xt = ut + b1ut−1 + b2ut−2 + · · ·
where 1 + b1L + b2L

2 + · · · = (1 − 1.4L + 0.66L2)−1. The prediction error h

step ahead is

ut+h + · · · + bhut+1

whose variance is σ2
u(1 + b2

1 + · · · + b2
h). The red lines in the figures have the

predicted value plus and minus two standard deviations of the prediction error,

which, if the process is normal, represents a 95% confidence interval.
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95

0

If we remove the trend a + bt we find basically the same picture. This is the

prediction of xt (the scale on the vertical axis has changed).
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The DS case is much more complicated. Here the source of non-stationarity is not

a deterministic component.

y1 = y0 + b + x1

y2 = y0 + b2 + x1 + x2

...

yt = y0 + bt + x1 + x2 + · · · + xt

that is

yt = y0 + bt + (1 + L + · · · + Lt−1)xt = y0 + bt +
1 − Lt

1 − L
xt

If

xt = ut + c1ut−1 + · · · = c(L)ut

then

yt = y0 + bt +
1 − Lt

1 − L
c(L)ut
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Rewrite

yt = y0 + bt +
1 − Lt

1 − L
c(L)ut

Now suppose that c(L) = (1 − L)d(L), which implies that c(1) = 0. We have

yt = y0+bt+
1 − Lt

1 − L
c(L)ut = y0+bt+(1−Lt)d(L)ut = (y0−d(L)u0)+bt+d(L)ut = a+bt+d(L)ut

with d(L)ut stationary. But then yt is TS.

So let us redefine a DS process as

yt = b + yt−1 + c(L)ut = b + yt−1 + (1 + c1L + c2L
2 + · · · )ut

where

c(1) = 1 + c1 + c2 + · · · 6= 0
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Example: c(L) = 1. This is

yt = yt−1 + b + ut

and is called random walk with drift.

yt = y0 + bt + u1 + u2 + · · · + ut

Usually we assume that the process starts at t = 1 and that y0 is a given non-

stochastic value. Then, conditional on y0, the mean of yt is y0 + bt and the

variance is

tσ2

u

The deterministic trend y0+bt has little importance: The variance around the trend

explodes (unlike the TS case).
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It is important to appreciate the difference with the stationary case:

yt = b + αyt−1 + ut

with |α| < 1 Assume the same approach, that is suppose that the process starts

at t = 1 (in the second line you have α = 1 for comparison:

yt =
[

αty0 + b(1 + α + · · · + αt−1
]

+
[

αt−1u1 + · · · + αut−1 + ut

]

(yt = y0 + b(1 + 1 + · · · + 1 ) + u1 + · · · + ut−1 + ut)

As t → ∞ this converges to the stationary solution

b

1 − α
+ (1 − αL)−1ut

Note that the effect of y0 converges to zero.
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Back to the random walk with drift

yt = b + yt−1 + ut

We have

yt+h = yt + bh + ut+1 + · · · + ut+h

so that

yt+h|t = yt + bh, E(yt+h − yt+h|t)
2 = σ2

uh

In the TS case the influence of yt on the predicted values tends to zero as h

increases: The predicted values approach the trend a + bt. In the random walk

the effect of yt on the predicted values never vanishes. Moreover, the prediction

error variance tends to infinity at speed h.
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100

In the figure:

A random walk between t = 60 and t = 100, blue line.

60 predicted values, green line.

95% confidence intervals, red lines.

You see the size of the confidence interval increasing, unlike the TS case, with√
h.
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1 10080

In the figure

yt = b + yt−1 + (1 − 0.8L)−1ut

blue line.

Predicted values at t = 80, red line.

Predicted values at t = 100, black line.

You see that the predicted values tend to a trend line with the same slope, which is

b, but with an intercept depending on the value of y at t, the origin of the prediction.
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85 99 100

Same as the previous figure, only that here the predictions are based at t = 99

and t = 100. This deserves some analysis.

yt+h = bh + yt + xt+1 + · · · + xt+h

Assume that

xt = ut + c1ut+1 + c2ut+2 + · · ·
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Rewrite

yt+h = bh + yt + xt+1 + · · · + xt+h

with

xt = ut + c1ut+1 + c2ut+2 + · · ·
Then

yt+h|t = bh + yt + xt+1|t + · · · + xt+h|t
= bh + yt + [c1ut + c2ut−1 + · · · ] + · · · + [chut + ch+1ut−1 · · · ]
= bh + yt + (c1 + c2 + · · · + ch)ut + (c2 + c3 + · · · + ch+1)ut−1 + · · ·

Obviously

yt+h|t−1 = b(h + 1) + yt−1 + xt|t−1 + · · · + xt+h|t−1

= b(h + 1) + yt−1 + [c1ut−1 + c2ut−2 + · · · ] + · · · + [chut−1 + ch+1ut−2 · · · ]
= b(h + 1) + yt−1 + (c1 + c2 + · · · + ch+1)ut−1 + (c2 + c3 + · · · + ch+2)ut−2 + · · ·
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Again

yt+h|t = bh + yt + xt+1|t + · · · + xt+h|t
= bh + yt + (c1 + c2 + · · · + ch)ut + (c2 + c3 + · · · + ch+1)ut−1 + · · ·

yt+h|t−1 = b(h + 1) + yt−1 + xt|t−1 + · · · + xt+h|t−1

= b(h + 1) + yt−1 + (c1 + c2 + · · · + ch+1)ut−1 + (c2 + c3 + · · · + ch+2)ut−2 + · · ·

Then

yt+h|t − yt+h|t−1 = yt − yt−1 − b + (c1 + c2 + · · · + ch)ut − c1ut−1 − c2ut−2 − · · ·
= xt + (c1 + c2 + · · · + ch)ut − c1ut−1 − c2ut−2 − · · ·
= (1 + c1 + c2 + · · · + ch)ut
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Rewrite

yt+h|t − yt+h|t−1 = yt − yt−1 − b + (c1 + c2 + · · · + ch)ut + (ch+1 − c1)ut−1 + (ch+2 − c2)ut−2 + · · ·
= (1 + c1 + c2 + · · · + ch)ut

In the limit, for h → ∞,

yt+h|t − yt+h|t−1 → (1 + c1 + c2 + · · · )ut = c(1)ut

The quantity

1 + c1 + c2 + · · · = c(1)

is called measure of persistence of the process yt. It is the change in the long-

run prediction due to ut, divided by ut Equivalently it is the change in long-run

prediction due to a shock of unitary value. Note that the persistence of a TS

process is zero.
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85 99 100

The graph shows, again, the change in the long-run prediction between t = 99

and t = 100 for a realization of the process

yt = b + yt−1 + (1 − 0.8L)−1ut

The purple segment between the two long-run predictions has length

(1 + 0.8 + 0.82 + · · · )u100 =
1

1 − 0.8
u100 = 5u100

5 being in this case the measure of persistence.
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A slightly different interpretation of the measure of persistence is the following.

Suppose that uτ = 0 for τ > t− 1, i.e. that there are no more shocks after ut−1.

Then, for τ > t − 1,

The value of yτ under the assumption that uτ = 0 for τ > t − 1 = yτ |t−1

In other words, the predicted value of y at τ > t− 1, given the values of y up to

t− 1, can be interpreted as the value that y would take at τ if the shock u ceased

to hit the process after t− 1. This is very easy, just go back to the previous slides

where we compute yt+h|t−1.
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Therefore

yτ |t − yτ |t−1

for τ > t, is the difference in the values that y takes at τ , that are caused by ut.

Thus

lim
τ→∞ yτ |t − yτ |t−1

is the long-run contribution of ut to the level of y.
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Important: The persistence for a stationary or a TS process is zero. That is, the

long-run prediction does not change with t. If yt is TS, yt = a + bt + xt, with xt

stationary and zero mean, then as h → ∞

yt+h|t → a + bt

In particular, if b = 0 (i.e. yt is stationary), then the long run prediction is the mean

a.

While the shock ut of a DS process has a permanent effect, namely the change in

the long-run prediction, the shock of a stationary or TS process has only a transitory

effect. Permanent and transitory shocks will be the subject of the last part of the

course.
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Exercise: Suppose that xt is ARMA

xt =
b(L)

a(L)
ut

with the roots of b(L) and a(L) outside the unit circle. Prove that

c(1) =
b(1)

a(1)
> 0

(Hint: Decompose the polynomials using the roots.)

What happens when some root of the MA polynomial (AR polynomial) approaches

unity?



Alternative explanations for economic fluctuations

If the model for non-stationarity is TS, then

1. Population growth, accumulation of capital, technical progress, all this secular

causes of change are summarized in the (oversimplified) function of time a + bt.

2. Shocks to demand (tastes, confidence, interest rate, quantity of money) are

represented by the cycle stationary component.
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But if the model for non-stationarity is a DS model, then how do we disentangle

shocks to technical knowledge from shocks to demand?

For example,

yt = b + yt−1 + (1 − 0.8L)−1vt
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We start with

yt = Tt + Ct

where Tt is the component representing population, capital and technical knowl-

edge, whereas Ct is the cycle. Of course we need assumptions.

Assumption 1. Tt is DS, i.e. is non-stationary but

Tt − Tt−1 = b + xt = b + a(L)ut

is stationary

Assumption 2. The cycle Ct is stationary. If Ct = c(L)vt, then

Ct − Ct−1 = (1 − L)c(L)vt = d(L)vt

so that d(1) = 0.

Assumption 3. The trend Tt and the cycle Ct are orthogonal at all leads and lags.

This is equivalent to saying that ut and vt are orthogonal at all leads and lags.



Alternative explanations for economic fluctuations

Assumption 3. The trend Tt and the cycle Ct are orthogonal at all leads and lags.

This is equivalent to saying that ut and vt are orthogonal at all leads and lags.

This is not obvious. However it is generally accepted in the literature I am going

to discuss. Under Assumption 3, since Tt − Tt−1 is stationary,

var(yt − yt−1) = var(Tt − Tt−1) + var(Ct − Ct−1)
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At the beginning of the 80's the TS model, then traditional in macroeconomic anal-

ysis, was tested using results obtained in the 70's by the statisticians Dickey and

Fuller.

The DS hypothesis, taken as the null while TS is the alternative, was not rejected for

a wide set of macroeconomic indicators, including GNP, Aggregate Consumption,

Industrial Production, Inflation, yearly figures with starting dates from 1860 to 1909,

ending date 1970. This is the first result in

C.R. Nelson and C.I. Plosser, Trends and random walks in macroeconomic time

series, Journal of Monetary Economics, 1982, 10.

This outcome was confirmed for US quarterly data and for data relative to many

different countries. Within a few years the TS model was completely superseded

by the DS.
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The second main result in Nelson and Plosser (1982) is the following: The au-

tocorrelation function estimated for the GNP implies that "the variation in output

changes is dominated by changes in secular component rather than the cyclical

component." (p. 155).

This is a big change. Consider again

yt − yt−1 = Tt − TT−1 + Ct − Ct−1

If the variance of Tt − Tt−1 were small as compared with the variance of Ct −
Ct−1, then moving from the traditional TS model to DS would not have important

consequences, either interpretive or in terms of economic policy.

But the fact that macroeconomic fluctuations are mainly driven by real shocks, this

is an enormous change: There is no longer any room for anticyclical economic

policy.
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If you are interested in the topic I urge you to go and read Nelson and Plosser

(1982) paper. However, here is some hint.

Suppose that we specify Tt and Ct as

Tt = b + ut, Ct = vt

so that

yt − yt−1 = b + ut + (vt − vt−1)
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Write again the decomposition into trend and cycle

yt − yt−1 = b + ut + (vt − vt−1)

A consequence is that the first order autocovariance of yt − yt−1 is −σ2
v , the first

order autocorrelation being

−σ2
v

σ2
u + 2σ2

v

which is negative. Now, this result is inconsistent with the Nelson and Plosser's

empirical finding that the first order autocorrelation of the GNP (first difference) is

positive.
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Objections to Nelson and Plosser.

M.W. Watson, Univariate detrending methods with stochastic trends, Journal of

Monetary Economics, 1986, 18.

Watson argues that an ARIMA is only a good approximation to the Wold represen-

tation, not the Wold representation. Other good approximations can be obtained.

He proposed

yt − yt−1 = Tt − Tt−1 + Ct − Ct−1

with

Tt − Tt−1 = b + ut, Ct = (1 − αL − βL2)−1vt

so that

yt − yt−1 = (b + ut) + (1 − L)(1 − αL − βL2)−1vt

Here the trend is a random walk while the cycle is AR(2).
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Again Watson's model:

yt−yt−1 = (Tt−Tt−1)+(Ct−Ct−1) = (b+ut)+(1−L)(1−αL−βL2)−1vt

that is

(1−αL−βL2)(yt − yt−1) = b(1−α−β)+ (1−αL−βL2)ut + (1−L)vt

This is called an Unobserved Components model, the components being Tt and

Ct. The parameters b, α, β, σ2
u, σ2

v are called hidden parameters.

We can prove that

(1 − αL − βL2)(yt − yt−1) = c + (1 − AL − BL2)wt

The latter is an ARIMA(2,1,2) for the observable yt − yt−1.
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Write again the two representations for yt − yt−1 (dropping the constant terms for

simplicity:

(1 − αL − βL2)(yt − yt−1) = (1 − αL − βL2)ut + (1 − L)vt (∗)

(1 − αL − βL2)(yt − yt−1) = (1 − AL − BL2)wt (∗∗)

Equating the autocovariances of the right hand sides we obtain the three equations:

(1 + α2 + β2)σ2
u + 2σ2

v = (1 + A2 + B2)σ2
w

(−α + βα)σ2
u − σ2

v = (−A + BA)σ2
w

−βσ2
u = −Bσ2

w

(S)

An idea of the estimation strategy can be as follows: Estimate the ARIMA(2,1,2) in

(∗∗), thus determining the parameters α and β, then use system (S) to compute

σ2
u and σ2

v . Watson shows that the solution is unique (not easy).
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Lastly we obtain the coefficients of the Wold representation implicit in the UCmodel:

yt − yt−1 =
1 − AL − AL2

1 − αL − βL2
wt = (1 + D1L + D2L

2 + · · · )wt

1 2 4 6 8 10 12 14 16 18 203 5
−0.2

0

1

1.2

The figure has the plot of the sequence Dk (blue line) together with the coefficients

of the Wold representation implicit in an AR(1) model estimated for yt − yt−1:

yt − yt−1 =
1

1 − δL
at = (1 + δL + δ2L2 + · · · )at
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Results:

1. The variance of at, the AR(1) residual, and of wt, the residual implicit in the

UC model are not significantly different. In other words, imposing the UC structure

does not worsen the fit.

2. Contrary to Nelson and Plosser's finding, the variance of the trend, i.e. the

variance of Tt − Tt−1 = b + ut, is smaller as compared to the variance of the

cycle.



Alternative explanations for economic fluctuations

Another objection to Nelson and Plosser. The UC model presented above has a

random walk trend and an AR(2) cyclical component:

Tt = Tt−1 + b + ut, Ct = (1 − αL − βL2)−1vt

Now remember that the trend should represent mainly the change in productivity

due to technical progress. A random walk implies that there is no correlation

between the change in productivity at time t and the change at time t − 1. But

this is not reasonable.

Processes like learning by doing within a firm, or diffusion of technical change

among firms, imply a smooth process like

Tt − Tt−1 = (p0 + p1L + p2L
2 + · · · )ut

The shock ut takes time to be entirely transferred into productivity increase. The

process is described by the coefficients pk. We can assume that pk ≥ 0 and that

p0 + p1 + p2 + · · · = 1
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It is possible to prove that a process like

Tt − Tt−1 = (p0 + p1L + p2L
2 + · · · )ut

can have a very small variance. An intuition is provided by the following example

Tt − Tt−1 = (1 − α)(1 + αL + α2L2 + · · · )ut

The coefficients sum to unity. Moreover, given σ2
u, as α → 0,

var(Tt − Tt−1) =
(1 − α)2

1 − α2
σ2

u =
1 − α

1 + α
σ2

u → 0

For this kind of objection see

D. Quah, The Relative Importance of Permanent and Transitory Components: Iden-

tification and Some Theoretical Bounds, Econometrica, 1992, 60.

M. Lippi and L. Reichlin, Diffusion of Technical Change and the Identification of the

Trend Component in Real GNP, Review of Economic Studies, 1994, 61.
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A multivariate approach to the problem of determining the relative importance of

trend and cycle in explaining macroeconomic fluctuations.

We have seen that the results obtained by Nelson and Plosser and other authors

depend very much on the model they start with: an ARIMA, UC models, which in

turn depend on the way we specify the trend and the cycle components. Now I will

discuss the paper

O.J. Blanchard and D. Quah, The dynamic effect of aggregate demand and supply

disturbances, American Economic Review, 1989, 79,

in which the assessment on trend and cycle depends only on the data.

Consider the stochastic stationary vector

zt =







∆yt

Ut







in which ∆ denoted 1 − L, so that the first component of zt is yt − yt−1, while

Ut is the unemployment rate.
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BQ start by estimating a VAR for the vector zt:

(I − A1L − A2L
2 − · · · − ApLp)







∆yt

Ut





 = A(L)







∆yt

Ut





 =







u1t

u2t







This means:

∆yt = [a11,1∆yt−1 + a11,2∆yt−2 + · · · + a11,p∆yt−p] + [a12,1Ut−1 + a12,2Ut−2 + · · · + a12,pUt−p] + u1t

Ut = [a21,1∆yt−1 + a21,2∆yt−2 + · · · + a21,p∆yt−p] + [a22,1Ut−1 + a22,2Ut−2 + · · · + a22,pUt−p] + u2t

The result of the estimation is A1, A2, · · · , Ap, plus the matrix

Σu =







σ11 σ12

σ21 σ22







i.e. the variance-covariance matrix of the residual vector.
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Start again with the estimated VAR:

A(L)







∆yt

Ut





 =







u1t

u2t







Denote by B(L) the inverse A(L)−1:







∆yt

Ut





 = A(L)−1







u1t

u2t





 = B(L)







u1t

u2t





 = (I + B1L + B2L
2 + · · · )







u1t

u2t







=







b11(L) b12(L)

b21(L) b22(L)













u1t

u2t







That is:

∆yt = b11(L)u1t + b12(L)u2t = [u1t + b11,1u1,t−1 + b11,2u1,t−2 + · · · ] + [ b12,1u2,t−1 + b12,2u2,t−2 + · · · ]

Ut = b21(L)u1t + b22(L)u2t = [ b21,1u1,t−1 + b21,2u1,t−2 + · · · ] + [u2t + b22,1u2,t−1 + b22,2u2,t−2 + · · · ]

This is the Wold representation.
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Again the Wold representation:

∆yt = b11(L)u1t + b12(L)u2t = [u1t + b11,1u1,t−1 + b11,2u1,t−2 + · · · ] + [ b12,1u2,t−1 + b12,2u2,t−2 + · · · ]

Ut = b21(L)u1t + b22(L)u2t = [ b21,1u1,t−1 + b21,2u1,t−2 + · · · ] + [u2t + b22,1u2,t−1 + b22,2u2,t−2 + · · · ]

You see here that ∆yt and Ut are driven by u1t and u2t. Of course saying that, for

example, u1t is the shock to technical knowledge while u2t is the shock to demand

does not make any sense. In the first place, u1t and u2t are not orthogonal in

general.

However, we can transform the vector (u1t u2t) in such a way that the above

interpretation is possible.
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First we transform the shocks u1t and u2t into v1t and v2t with v1t ⊥ v2t. This is

easy. Consider the regression:

u2t = αu1t + st, with α = σ12/σ11

Of course st ⊥ u1t.

We have






u1t

u2t





 =







1 0

α 1













u1t

st







and






∆yt

Ut





 =







b11(L) b12(L)

b21(L) b22(L)













u1t

u2t





 =













b11(L) b12(L)

b21(L) b22(L)













1 0

α 1



















u1t

st





 =







c11(L) c12(L)

c21(L) c22(L)













v1t

v2t






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Thus now we have






∆yt

Ut





 =







c11(L) c12(L)

c21(L) c22(L)













v1t

v2t







in which ∆yt and Ut are driven by orthogonal shocks. We further transform the

representation in such a way that the shocks are normalized, i.e. have unit vari-

ance:






∆yt

Ut





 =







c11(L) c12(L)

c21(L) c22(L)













v1t

v2t





 =













c11(L) c12(L)

c21(L) c22(L)













σv1
0

0 σv2



















σ−1
v1

0

0 σ−1
v2













v1t

v2t





 =







d11(L) d12(L)

d21(L) d22(L)













w1t

w2t







with obvious definitions.
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Summing up






∆yt

Ut





 = B(L)ut = C(L)vt = D(L)wt

Going over the definitions you see that

B(0) = I2, C(0) =







1 0

α 1





 , D(0) =







1 0

α 1













σv1
0

0 σv2





 =







σv1
0

ασv1
σv2







Considering the last representation,







∆yt

Ut





 =







d11(L) d12(L)

d21(L) d22(L)













w1t

w2t





 , D(0) =







σv1
0

ασv1
σv2







so that

∆yt = [d11,0w1t + d11,1w1,t−1 + d11,2w1,t−2 + · · · ] + [d12,0w2t + d12,1w2,t−1 + d12,2w2,t−2 + · · · ]

= [ σv1
w1t + d11,1w1,t−1 + d11,2w1,t−2 + · · · ] + [ d12,1w2,t−1 + d12,2w2,t−2 + · · · ]

Ut = [d21,0w1t + d21,1w1,t−1 + d21,2w1,t−2 + · · · ] + [d22,0w2t + d22,1w2,t−1 + d22,2w2,t−2 + · · · ]

= [ασv1
w1t + d21,1w1,t−1 + d21,2w1,t−2 + · · · ] + [ σv2

w2t + d22,1w2,t−1 + d22,2w2,t−2 + · · · ]
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∆yt = [ σv1
w1t + d11,1w1,t−1 + d11,2w1,t−2 + · · · ] + [ d12,1w2,t−1 + d12,2w2,t−2 + · · · ]

Ut = [ασv1
w1t + d21,1w1,t−1 + d21,2w1,t−2 + · · · ] + [ σv2

w2t + d22,1w2,t−1 + d22,2w2,t−2 + · · · ]

Now suppose that we believe that the shock to demand impacts the GNP within

the quarter, whereas the impact of the shock to technology occurs with a lag of

one quarter. Then w1t and w2t can be interpreted as the shock to demand and

the shock to technology respectively, and the representation above is structural.

The assumptions

1. Orthogonality of the shocks to demand and technology,

2. Normalization of the shocks.

3. Demand shocks impact within the quarter, technology shocks with delay,

are sufficient for identification of the shocks wt and the matrix D(L).
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Assuming that the shocks are orthogonal and that their impact on the macroeco-

nomic variables occur in different quarters has been the most usual identification

assumption in Structural VAR analysis for some time, following C. Sims, Macroe-

conomics and reality, Econometrica, 1980, 48.

However, identification condition 3 is not the one we want to assume. Remember

that

yt−1 = Tt + Ct

where Tt is DS and Ct is stationary. Now we want to elaborate on this.
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Consider again







∆yt

Ut





 = B(L)ut = C(L)vt = D(L)wt

This is where we are. Remember that the components of wt are orthonormal.

Obviously we can obtain infinitely many other reprentations in which the white noise

is orthonormal:






∆yt

Ut





 = D(L)M−1Mwt = F (L)zt

provided that zt = Mwt is orthonormal



Alternative explanations for economic fluctuations

So we want that

zt = Mwt =







m11 m12

m21 m22













w1t

w2t





 =







m11w1t + m12w2t

m21w1t + m22w2t







is orthonormal.

Using the assumption that wt is orthonormal, we find the conditions

m2

11 + m2

12 = 1, m2

21 + m2

22 = 1, m11m21 + m12m22 = 0

This is equivalent to

MM ′ = I, that is M−1 = M ′

M is called a unitary matrix.
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2-dimensional unitary matrices have the representation

M =







cos θ sin θ

− sin θ cos θ













±1 0

0 ±1







that is a symmetry plus a rotation of angle θ.

Back to






∆yt

Ut





 = D(L)M−1Mwt = F (L)zt

We see that the symmetry has only effect on the sign of the components of wt.

This can be dealt with separately. So let us concentrate on the rotation.
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Again






∆yt

Ut





 =







d11(L) d12(L)

d21(L) d22(L)













w1t

w2t







Insert the rotation






∆yt

Ut





 = [D(L)M−1][Mwt] =













d11(L) d12(L)

d21(L) d22(L)













cos θ − sin θ

sin θ cos θ

























cos θ sin θ

− sin θ cos θ













w1t

w2t













=







d11(L) cos θ + d12(L) sin θ −d11(L) sin θ + d12(L) cos θ

d21(L) cos θ + d22(L) sin θ −d21(L) sin θ + d22(L) cos θ













zθ
1t

zθ
2t







In particular

∆yt = [d11(L) cos θ + d12(L) sin θ]zθ
1t + [−d11(L) sin θ + d12(L) cos θ]zθ

2t
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Again:

∆yt = [d11(L) cos θ + d12(L) sin θ]zθ
1t + [−d11(L) sin θ + d12(L) cos θ]zθ

2t

But

∆yt = ∆Tt + ∆Ct = d(L)ut + (1 − L)c(L)vt

But then if, say, zθ
2t is the shock to the cycle we must have

−d11(1) sin θ + d12(1) cos θ = 0

that is

tan θ =
d12(1)

d11(1)
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It only remains to decide which of the matrices







±1 0

0 ±1







must be chosen.

But this will be done by elementary considerations. For example, we want that

positive shocks to technology and the cycle have a positive first impact on ∆yt.
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In conclusion, we have identified






∆yt

Ut





 = F (L)zt

with F12(1) = 0 so that z2t has the interpretation as a shock to the business

cycle while z1t is the technology shock. The analysis presented above is known

as Structural VAR analysis (SVAR).

Blanchard and Quah found that the variance of the cycle component was bigger

than that of the trend component, a result that is in contrast with Nelson and

Plosser's finding.
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Our last topic is the impulse-response functions of a SVAR. Suppose that

z1t =















1 for t = 0

0 for all t 6= 0

and that z2t = 0 for all t. Then, as you easily see, the variables ∆yt and Ut would

follow the paths

Time · · · −1 0 1 2 3 · · ·
∆yt · · · 0 f11,0 f11,1 f11,2 f11,3 · · ·
Ut · · · 0 f21,0 f21,1 f21,2 f21,3 · · ·

The sequences above are called the impulse-response functions of ∆yt and Ut,

respectively, to a unitary shock to technology. The definition for the shock to the

cycle is obvious.
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The impulse-response function of ∆yt to the technology shock is

f11,0 f11,1 f11,2 · · ·

and analogously for the shock to the cycle. The impulse-response functions of yt
to the technology shock is obtained by cumulating:

f11,0 f11,0 + f11,1 f11,0 + f11,1 + f11,2 · · ·

Taking a look at Blanchard and Quah's estimated impulse-response functions is

recommended.


