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Abstract
‘Classical’ econometric theory assumes that observed data come from a stationary pro-

cess, where means and variances are constant over time. Graphs of economic time series,
and the historical record of economic forecasting, reveal the invalidity of such an assump-
tion. Consequently, we discuss the importance of stationarity for empirical modeling and in-
ference; describe the effects of incorrectly assuming stationarity; explain the basic concepts
of non-stationarity; note some sources of non-stationarity; formulate a class of non-stationary
processes (autoregressions with unit roots) that seem empirically relevant for analyzing eco-
nomic time series; and show when an analysis can be transformed by means of differencing and
cointegrating combinations so stationarity becomes a reasonable assumption. We then describe
how to test for unit roots and cointegration. Monte Carlo simulations and empirical examples
illustrate the analysis.

1 Introduction

Much of ‘classical’ econometric theory has been predicated on the assumption that the observed
data come from a stationary process, meaning a process whose means and variances are constant
over time. A glance at graphs of most economic time series, or at the historical track record of
economic forecasting, suffices to reveal the invalidity of that assumption: economies evolve, grow,
and change over time in both real and nominal terms, sometimes dramatically – and economic
forecasts are often badly wrong, although that should occur relatively infrequently in a stationary
process.

Figure 1 shows some ‘representative’ time series to emphasize this point.1 The first panel (de-
noted a) reports the time series of broad money in the UK over 1868–1993 on a log scale, together
with the corresponding price series (the UK data for 1868–1975 are from Friedman and Schwartz,
1982, extended to 1993 by Attfield, Demery and Duck, 1995). From elementary calculus, since
∂ log y/∂y = 1/y, the log scale shows proportional changes: hence, the apparently small move-
ments between the minor tic marks actually represent approximately 50% changes. Panel b shows

∗Financial support from the U.K. Economic and Social Research Council under grant R000234954, and from the
Danish Social Sciences Research Council is gratefully acknowledged. We are pleased to thank Campbell Watkins for
helpful comments on, and discussion of, earlier drafts.

1Blocks of four graphs are lettered notionally as a, b; c, d in rows from the top left; six graphs are a, b, c; d, e, f; and
so on.
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Figure 1 Some ‘representative’ time series.

real (constant price) money on a log scale, together with real (constant price) output also on a log
scale: the wider spacing of the tic marks reveals a much smaller range of variation, but again, the
notion of a constant mean seems untenable. Panel c records long-run and short-run interest rates
in natural scale, highlighting changes over time in the variability of economic series, as well as in
their means, and indeed, of the relationships between them: all quiet till 1929, the two variables
diverge markedly till the early 1950s, then rise together with considerable variation. Nor is the
non-stationarity problem specific to the UK: panels d and e show the comparative graphs to b and
c for the USA, using post-war quarterly data (from Baba, Hendry and Starr, 1992). Again, there is
considerable evidence of change, although the last panel f comparing UK and US annual inflation
rates suggests the UK may exhibit greater instability. It is hard to imagine any ‘revamping’ of the
statistical assumptions such that these outcomes could be construed as drawings from stationary
processes.2

Intermittent episodes of forecast failure (a significant deterioration in forecast performance rel-
ative to the anticipated outcome) confirm that economic data are not stationary: even poor models
of stationary data would forecast on average as accurately as they fitted, yet that manifestly does
not occur empirically. The practical problem facing econometricians is not a plethora of congruent
models from which to choose, but to find any relationships that survive long enough to be useful.
It seems clear that stationarity assumptions must be jettisoned for most observable economic time

2It is sometimes argued that economic time series could be stationary around a deterministic trend, and we will
comment on that hypothesis later.
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series.
Four issues immediately arise:

(1) how important is the assumption of stationarity for modeling and inference?
(2) what are the effects of incorrectly assuming it?
(3) what are the sources of non-stationarity?
(4) can empirical analyses be transformed so stationarity becomes a valid assumption?

Essentially, the answers are ‘very’; ‘potentially hazardous’; ‘many and varied’; and ‘sometimes,
depending on the source of non-stationarity’. Only intuitive explanations for these answers can be
offered at this stage of our paper, but roughly:

(1) when data means and variances are non-constant, observations come from different distribu-
tions over time, posing difficult problems for empirical modeling;

(2) assuming constant means and variances when that is false can induce serious statistical mis-
takes, as we will show;

(3) non-stationarity can be due to evolution of the economy, legislative changes, technological
change, and political turmoilinter alia;

(4) some forms of non-stationarity can be eliminated by transformations, and much of our paper
concerns an important case where that is indeed feasible.

We expand on all four of these issues below, but to develop the analysis, we first discuss some
necessary econometric concepts based on a simple model (in Section 2), and define the properties
of a stationary and a non-stationary process (Section 3). As embryology often yields insight into
evolution, we next review the history of regression analyses with trending data (Section 4) and
consider the possibilities of obtaining stationarity by transformation (called cointegration). Section
5 uses simulation experiments to look at the consequences of data being non-stationary in regression
models, building on the famous study in Yule (1926). We then briefly review tests to determine the
presence of non-stationarity in the class noted in Section 5 (called univariate unit-root processes:
Section 6), as well as the validity of the transformation in Section 4 (cointegration tests: Section 7).
Finally, we empirically illustrate the concepts and ideas for a data set consisting of gasoline prices
in two major locations (Section 8). Section 9 concludes.

2 Addressing non-stationarity

Non-stationarity seems a natural feature of economic life. Legislative change is one obvious source
of non-stationarity, often inducing structural breaks in time series, but it is far from the only one.
Economic growth, perhaps resulting from technological progress, ensures secular trends in many
time series, as Figure 1 illustrated. Such trends need to be incorporated into statistical analyses,
which could be done in many ways, including the venerable linear trend. Our focus here will be
on a type of stochastic non-stationarity induced by persistent cumulation of past effects, called
unit-root processes (an explanation for this terminology is provided below).3 Such processes can be

3Stochastic means the presence of a random variable.
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interpreted as allowing a different ‘trend’ at every point in time, so are said to have stochastic trends.
Figure 2 provides an artificial example: ‘joining’ the successive observations as shown produces a
‘jumpy’ trend, as compared to the (best-fitting) deterministic linear trend (shown as a dotted line).

1 2 3 4 5 6 7 8 9 10

2

4

6

8

10

Best−fitting deterministic linear trend 
Artificial variable 

Figure 2 An artificial variable with a stochastic trend.

There are many plausible reasons why economic data may contain stochastic trends. For ex-
ample, technology involves the persistence of acquired knowledge, so that the present level of tech-
nology is the cumulation of past discoveries and innovations. Economic variables depending closely
on technological progress are therefore likely to have a stochastic trend. The impact of structural
changes in the world oil market is another example of non-stationarity. Other variables related
to the level of any variable with a stochastic trend will ‘inherit’ that non-stationarity, and trans-
mit it to other variables in turn: nominal wealth and exports spring to mind, and therefore income
and expenditure, and so employment, wages etc. Similar consequences follow for every source of
stochastic trends, so the linkages in economies suggest that the levels of many variables will be
non-stationary, sharing a set of common stochastic trends.

A non-stationary process is, by definition, one which violates the stationarity requirement, so
its means and variances are non-constant over time. For example, a variable exhibiting a shift in
its mean is a non-stationary process, as is a variable with a heteroscedastic variance over time. We
will focus here on the non-stationarity caused by stochastic trends, and discuss its implications for
empirical modeling.

To introduce the basic econometric concepts, we consider a simple regression model for a vari-
ableyt containing a fixed (or deterministic) linear trend with slopeβ generated from an initial value
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y0 by:
yt = y0 + βt+ ut for t = 1, ..., T. (1)

To make the example more realistic, the error termut is allowed to be a first-order autoregressive
process:

ut = ρut−1 + εt. (2)

That is, the current value of the variableut is affected by its value in the immediately preceding
period (ut−1) with a coefficientρ, and by a stochastic ‘shock’εt. We discuss the meaning of the
autoregressive parameterρ below. The stochastic ‘shock’εt is distributed asIN[0, σ2

ε ], denoting an
independent (I), normal (N) distribution with a mean of zero (E [εt] = 0) and a varianceV [εt] = σ2

ε :
since these are constant parameters, an identical distribution holds at every point in time. A process
such as{εt} is often called a normal ‘white-noise’ process. Of the three desirable properties of
independence, identical distributions, and normality, the first two are clearly the most important.
The processut in (2) is not independent, so we first consider its properties. In the following,
we will use the notationut for an autocorrelated process, andεt for a white-noise process. The
assumption of only first-order autocorrelation inut, as shown in (2), is for notational simplicity,
and all arguments generalize to higher-order autoregressions. Throughout the paper, we will use
lower-case letters to indicate logarithmic scale, soxt = log(Xt).

Dynamic processes are most easily studied using the lag operatorL (see e.g., Hendry, 1995,
chapter 4) such thatLxt = xt−1. Then, (2) can be written asut = ρLut + εt or:

ut =
εt

1 − ρL
. (3)

When|ρ| < 1, the term1/(1 − ρL) in (3) can be expanded as(1 + ρL+ ρ2L2 + · · ·). Hence:

ut = εt + ρεt−1 + ρ2εt−2 + · · · . (4)

Expression (4) can also be derived after repeated substitution in (2). It appears thatut is the sum
of all previous disturbances (shocks)εt−i, but that the effects of previous disturbances decline with
time because|ρ| < 1. However, now think of (4) as a process directly determiningut – ignoring our
derivation from (2) – and consider what happens whenρ = 1. In that case,ut = εt+εt−1+εt−2+· · ·,
so each disturbance persists indefinitely and has a permanent effect onut. Consequently, we say
that ut has the ‘stochastic trend’Σt

i=1εi. The difference between a linear stochastic trend and
a deterministic trend is that the increments of a stochastic trend are random, whereas those of a
deterministic trend are constant over time as Figure 2 illustrated. From (4), we notice thatρ =
1 is equivalent to the summation of the errors. In continuous time, summation corresponds to
integration, so such processes are also called integrated, here of first order: we use the shorthand
notationut ∼ I(1) whenρ = 1, andut ∼ I(0) when|ρ| < 1.

From (4), when|ρ| < 1, we can derive the properties ofut as:

E [ut] = 0 and V [ut] =
σ2

ε

1 − ρ2
. (5)



6

Hence, the larger the value ofρ, the larger the variance ofut. Whenρ = 1, the variance ofut

becomes indeterminate andut becomes a random walk. Interpreted as a polynomial inL, (3) has
a factor of1 − ρL, which has a root of1/ρ: whenρ = 1, (2) is called a unit-root process. While
there may appear to be many names for the same notion, extensions yield important distinctions:
for example, longer lags in (2) precludeut being a random walk, and processes can be integrated of
order 2 (i.e.,I(2)), so have several unit roots.

Returning to the trend regression example, by substituting (2) into (1) we get:

yt = βt+
εt

1 − ρL
+ y0 (6)

and by multiplying through the factor(1 − ρL):

(1 − ρL)yt = (1 − ρL)βt+ (1 − ρL)y0 + εt. (7)

From (7), it is easy to see why the non-stationary process which results whenρ = 1, is often called
a unit-root process, and why an autoregressive error imposes a common-factor dynamics on a static
regression model (see e.g., Hendry and Mizon, 1978). Whenρ = 1 in (7), the root of the lag
polynomial is unity, so it describes a linear difference equation with a unit coefficient.

Rewriting (7) usingLxt = xt−1, we get:

yt = ρyt−1 + β(1 − ρ)t+ ρβ + (1 − ρ)y0 + εt, (8)

and it appears that the ‘static’ regression model (1) with autocorrelated residuals is equivalent to the
following dynamic model with white-noise residuals:

yt = b1yt−1 + b2t+ b0 + εt (9)

where
b1 = ρ

b2 = β(1 − ρ)
b0 = ρβ + (1 − ρ)y0.

(10)

We will now consider four different cases, two of which correspond to non-stationary (unit-root)
models, and the other two to stationary models:
Case 1.ρ = 1 andβ 6= 0. It follows from (8) that∆yt = β + εt, for t = 1, . . . , T , where∆yt =
yt − yt−1. This model is popularly called a ‘random walk with drift’. Note thatE[∆yt] = β 6= 0 is
equivalent toyt having a linear trend, since although the coefficient oft in (8) is zero, the coefficient
of yt−1 is unity so it ‘integrates’ the ‘intercept’β, just asut cumulated pastεt in (4).
Case 2.ρ = 1 andβ = 0. From Case 1, it follows immediately that∆yt = εt. This is called a pure
random walk model: sinceE[∆yt] = 0, yt contains no linear trend.
Case 3.|ρ| < 1 andβ 6= 0 gives us (9), i.e., a ‘trend-stationary’ model. The interpretation of the
coefficientsb1, b2, andb0 must be done with care: for example,b2 is not an estimate of the trend in
yt, insteadβ = b2/(1 − ρ) is the trend in the process.4

4We doubt that GNP (say) has a deterministic trend, because of the thought experiment that output would then continue
to grow if we all ceased working.....
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Case 4. |ρ| < 1 andβ = 0 deliversyt = ρyt−1 + (1 − ρ)y0 + εt, which is the usual stationary
autoregressive model with a constant term.

Hence:
• in the static regression model (1), the constant term is essentially accounting for the unit of

measurement ofyt, i.e., the ‘kick-off’ value of they series;
• in the dynamic regression model (9), the constant term is a weighted average of the growth

rateβ and the initial valuey0;
• in the differenced model (ρ = 1), the constant term is solely measuring the growth rate,β.

We will now provide some examples of economic variables that can be appropriately described by
the above simple models.

3 Properties of a non-stationary and a stationary process

Unit-root processes can also arise as a consequence of plausible economic behavior. As an ex-
ample, we will discuss the possibility of a unit root in the long-term interest rate. Similar arguments
could apply to exchange rates, other asset prices, and prices of widely-traded commodities, such as
gasoline.

If changes to long-term interest rates (Rl) were predictable, andRl > Rs (the short-term rate)
– as usually holds, to compensate lenders for tying up their money – one could create a money
machine. Just predict the forthcoming change inRl, and borrow atRs to buy bonds if you ex-
pect a fall inRl (a rise in bond prices) or sell short ifRl is likely to rise. Such a scenario of
boundless profit at low risk seems unlikely, so we anticipate that the expected value of the change
in the long-term interest rate at timet − 1, given the relevant information setIt−∞, is zero, i.e.,
Et−1 [∆Rl,t|It−∞] = 0 (more generally, the change should be small on a risk-adjusted basis after
transactions costs). As a model, this translates into:

Rl,t = Rl,t−1 + εt (11)

whereEt−1 [εt|It−∞] = 0 andεt is anID[0, σ2
ε ] process (whereD denotes the relevant distribution,

which need not be normal). The model in (11) has a unit coefficient onRl,t−1, and as a dynamic
relation, is a unit-root process. To discuss the implications for empirical modeling of having unit
roots in the data, we first need to discuss the statistical properties of stationary and non-stationary
processes.5

3.1 A non-stationary process

Equation (11) shows that the whole ofRl,t−1 andεt influenceRl,t, and hence, in the next period,
the whole ofRl,t influencesRl,t+1 and so on. Thus, the effect ofεt persists indefinitely, and past
errors accumulate with no ‘depreciation’, so an equivalent formulation of (11) is:

Rl,t = εt + εt−1 + · · · + ε1 + ε0 + ε−1 · · · (12)

5Empirically, for the monthly data over 1950(1)–1993(12) on 20-year bond rates in the USA shown in Figure 3, the
estimated coefficient ofRl,t−1 in (11) is 0.994 with an estimated standard error of 0.004.
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Figure 3 Monthly long-term interest rates in the USA, in levels and differences, 1950–1993.

or alternatively:
Rl,t = εt + εt−1 + · · · + ε1 +Rl,0 (13)

where the initial valueRl,0 = ε0 + ε−1... contains all information of the past behavior of the
long-term interest rate up to time 0. In practical applications, time 0 corresponds to the first ob-
servation in the sample. Equation (12) shows that theoretically, the unit-root assumption implies
an ever-increasing variance to the time series (around a fixed mean), violating the constant-variance
assumption of a stationary process. In empirical studies, the conditional model (13) is more relevant
as a description of the sample variation, and shows that{Rl,t|Rl,0} has a finite variance,tσ2

ε , but
this variance is non-constant since it changes witht = 1, . . . , T .

Cumulating random errors will make them smooth, and in fact, induces properties like those
of economic variables, as first discussed by Working (1934) (soRl,t should be smooth, at least in
comparison to its first difference, and is, as illustrated in Figure 3, panels a and b). From (13), taking
Rl,0 as a fixed number, one can see that:

E [Rl,t] = Rl,0 (14)

and that:
V [Rl,t] = σ2

ε t. (15)

Further, perhaps not so easily seen, whent > s, the covariance between drawingst − s periods
apart is:

C [Rl,t,Rl,t−s] = E [(Rl,t − Rl,0) (Rl,s − Rl,0)] = σ2
ε s (16)
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and so:
corr2 [Rl,t,Rl,t−s] = 1 − s

t
. (17)

Consequently, whent is large, all the serial correlations for a random-walk process are close to
unity, a feature ofRl,t as illustrated in Figure 3, panel e. Finally, even if{Rl,t} is the sum of
a large number of errors it will not be approximately normally distributed. This is because each
observation,Rl,t|Rl,0, t = 1, ..., T, has a different variance. Figure 3, panel c shows the histogram
of approximately 80 quarterly observations for which the observed distribution is bimodal, and so
does not look even approximately normal. We will comment on the properties of∆Rl,t below.

To summarize, the variance of a unit-root process increases over time, and successive observa-
tions are highly interdependent. The theoretical mean of the conditional processRl,t|Rl,0 is constant
and equal toRl,0. However, the theoretical mean and the empirical sample meanRl are not even
approximately equal when data are non-stationary (surprisingly, the sample mean divided by

√
3T

is distributed asN[0, 1] in large samples: see Hendry, 1995, chapter 3).

3.2 A stationary process

We now turn to the properties of a stationary process. As argued above, most economic time series
are non-stationary, and at best become stationary only after differencing. Therefore, we will from
the outset discuss stationarity either for a differenced variable{∆yt} or for theIID errors{εt}.

A variable∆yt is weakly stationary when its first two moments are constant over time, or more
precisely, whenE[∆yt] = µ, E[(∆yt − µ)2] = σ2, andE[(∆yt − µ)(∆yt−s − µ)] = γ(s) ∀s, where
µ, σ2, andγ(s) are finite and independent oft.6

As an example of a stationary process take the change in the long-term interest rate from (11):

∆Rl,t = εt where εt ∼ ID
[
0, σ2

ε

]
. (18)

It is a stationary process with meanE[∆Rl,t] = 0, E[(∆Rl,t−0)2] = σ2
ε , andE[(∆Rl,t−0)(∆Rl,t−s−

0)] = 0 ∀s, because∆Rl,t = εt is assumed to be anIID process. This is illustrated by the graph of
the change in the long-term bond rate in Figure 3, panel b. We note that the autocorrelations have
more or less disappeared (panel f), and that the density distribution is approximately normal except
for an outlier corresponding to the deregulation of capital movements in 1983 (panel d).

An IID process is the simplest example of a stationary process. However, as demonstrated in
(2), a stationary process can be autocorrelated, but such that the influence of past shocks dies out.
Otherwise, as demonstrated by (4), the variance would not be constant.

4 Regression with trending variables: a historical review

One might easily get the impression that the unit-root literature is a recent phenomenon. This is
clearly not the case: already in 1926, Udny Yule analyzed the hazards of regressing a trending vari-
able on another unrelated trending variable – the so-called ‘nonsense regression’ problem. However,

6When the moments depend on the initial conditions of the process, stationarity holds only asymptotically (see e.g.
Spanos, 1986), but we ignore that complication here.
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the development of ‘unit-root econometrics’ that aims to address this problem in a more constructive
way, is quite recent.

A detailed history of econometrics has also developed over the past decade and full coverage is
provided in Morgan (1990), Qin (1993), and Hendry and Morgan (1995). Here, we briefly review
the evolution of the concepts and tools underpinning the analysis of non-stationarity in economics,
commencing with the problem of ‘nonsense correlations’, which are extremely high correlations
often found between variables for which there is no ready causal explanation (such as birth rates of
humans and the number of storks’ nests in Stockholm).

Yule (1926) was the first to formally analyze such ‘nonsense correlations’. He thought that
they were not the result of both variables being related to some third variable (e.g., population
growth). Rather, he categorized time series according to their serial-correlation properties, namely,
how highly correlated successive values were with each other, and investigated how their cross-
correlation coefficientrxy behaved when two unconnected seriesx andy had:
A] random levels;
B] random first differences;
C] random second differences.
For example, in case B, the data take the form∆xt = εt (Case 2. in Section 3) whereεt is IID.
Since the value ofxt depends on all past errors with equal weights, the effects of distant shocks
persist, so the variance ofxt increases over time, making it non-stationary. Therefore, the level of
xt contains information about all permanent disturbances that have affected the variable, starting
from the initial levelx0 at time 0, and contains the linear stochastic trendΣεi. Similarly for the
yt series, although its stochastic trend depends on cumulating errors that are independent of those
enteringxt.

Yule found thatrxy was almost normally distributed in case A, but became nearly uniformly
distributed (except at the end points) in B. He was startled to discover thatrxy had aU-shaped
distribution in C, so the correct null hypothesis (of no relation betweenx and y) was virtually
certain to be rejected in favor of a near-perfect positive or negative link. Consequently, it seemed
as if inference could go badly wrong once the data were non-stationary. Today, his three types of
series are called integrated of orders zero, one, and two respectively (I(0), I(1), andI(2) as above).
Differencing anI(1) series delivers anI(0), and so on. Section 5 replicates a simulation experiment
that Yule undertook.

Yule’s message acted as a significant discouragement to time-series work in economics, but
gradually its impact faded. However, Granger and Newbold (1974) highlighted that a good fit with
significant serial correlation in the residuals was a symptom associated with nonsense regressions.
Hendry (1980) constructed a nonsense regression by using cumulative rainfall to provide a better
explanation of price inflation than did the money stock in the UK. A technical analysis of the sources
and symptoms of the nonsense-regressions problem was finally presented by Phillips (1986).

As economic variables have trended over time since the Industrial Revolution, ensuring non-
stationarity resulted in empirical economists usually making careful adjustments for factors such as
population growth and changes in the price level. Moreover, they often worked with the logarithms
of data (to ensure positive outcomes and models with constant elasticities), and thereby implicitly
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assumed constant proportional relations between non-stationary variables. For example, ifβ 6= 0
andut is stationary in the regression equation:

yt = β0 + β1xt + ut (19)

thenyt andxt must contain the same stochastic trend, since otherwiseut could not be stationary.
Assume thatyt is aggregate consumption,xt is aggregate income, and the latter is a random walk,
i.e.,xt = Σεi + x0.

7 If aggregate income is linearly related to aggregate consumption in a causal
way, thenyt would ‘inherit’ the non-stationarity fromxt, andut would be stationary unless there
were other non-stationary variables than income causing consumption.

Assume now that, as before,yt is non-stationary, but it is not caused byxt and instead is determ-
ined by another non-stationary variable, say,zt = Σνi + z0, unrelated toxt. In this case,β1 = 0
in (19) is the correct hypothesis, and hence what one would like to accept in statistical tests. Yule’s
problem in case B can be seen clearly: ifβ1 were zero in (19), thenyt = β0 + ut; i.e.,ut contains
Σνi so is non-stationary and, therefore, inconsistent with the stationarity assumption of the regres-
sion model. Thus, one cannot conduct standard tests of the hypothesis thatβ1 = 0 in such a setting.
Indeed,ut being autocorrelated in (19), withut being non-stationary as the extreme case, is what
induces the non-standard distributions ofrxy.

Nevertheless, Sargan (1964) linked static-equilibrium economic theory to dynamic empirical
models by embedding (19) in an autoregressive-distributed lag model:

yt = b0 + b1yt−1 + b2xt + b3xt−1 + εt. (20)

The dynamic model (20) can also be formulated in the so-called equilibrium-correction form by
subtractingyt−1 from both sides and subtracting and addingb2xt−1 to the right-hand side of (20):

∆yt = α0 + α1∆xt − α2 (yt−1 − β1xt−1 − β0) + εt (21)

whereα1 = b2, α2 = (1−b1), β1 = (b2 +b3)/(1−b1), andα0 +α2β0 = b0. Thus, all coefficients
in (21) can be derived from (20). Models such as (21) explain growth rates inyt by the growth in
xt and the past disequilibrium between the levels. Think of a situation where consumption changes
(∆yt) as a result of a change in income (∆xt), but also as a result of previous period’s consumption
not being in equilibrium (i.e.,yt−1 6= β0 + β1xt−1). For example, if previous consumption was
too high, it has to be corrected downwards, or if it was too low, it has to be corrected upwards.
The magnitude of the past disequilibrium is measured by (yt−1 − β1xt−1 − β0) and the speed of
adjustment towards this steady-state byα2.

Notice that whenεt, ∆yt and∆xt areI(0), there are two possibilities:

• α2 6= 0 and(yt−1 − β1xt−1 − β0) ∼ I(0), or
• α2 = 0 and(yt−1 − β1xt−1 − β0) ∼ I(1).

7Recall lower case letters are in logaritmic form.
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The latter case can be seen from (20). Whenα2 = 0, then ∆yt = α0 + α1∆xt + εt, and by
integrating we getyt = α1xt +

∑
εt. Notice also that by subtractingβ1∆xt from both sides of (21)

and collecting terms, we can derive the properties of the equilibrium errorut = (y − β1x− β0)t:

(y − β1x− β0)t = α0 + (α1 − β1)∆xt + (1 − α2)(y − β1x− β0)t−1 + εt (22)

or:
ut = ρut−1 + α0 + (α1 − β1)∆xt + εt. (23)

whereρ = (1− α2).8 Thus, the equilibrium error is an autocorrelated process; the higher the value
of ρ (equivalently the smaller the value ofα2), the slower is the adjustment back to equilibrium,
and the longer it takes for an equilibrium error to disappear. Ifα2 = 0, there is no adjustment, and
yt does not return to any equilibrium value, but drifts as a non-stationary variable. To summarize:
whenα2 6= 0 (soρ 6= 1), the ‘equilibrium error’ut = (y−β1x−β0)t is a stationary autoregressive
process.

I(1) ‘nonsense-regressions’ problems will disappear in (21) because∆yt and∆xt areI(0) and,
therefore, no longer trending. Standardt-statistics will be ‘sensibly’ distributed (assuming that
εt is IID), irrespective of whether the past equilibrium error,ut−1, is stationary or not.9 This is
because a stationary variable,∆yt, cannot be explained by a non-stationary variable, andα̂2 ' 0 if
ut−1 ∼ I(1). Conversely, whenut−1 ∼ I(0), thenα̂2 measures the speed of adjustment with which
∆yt adjusts (corrects) towards each new equilibrium position.

Based on equations like (21), Hendry and Anderson (1977) noted that ‘there are ways to achieve
stationarity other than blanket differencing’, and argued that terms likeut−1 would often be station-
ary even when the individual series were not. More formally, Davidson, Hendry, Srba and Yeo
(1978) introduced a class of models based on (21) which they called ‘error-correction’ mechan-
isms (denoted ECMs). To understand the status of equations like (21), Granger (1981) introduced
the concept of cointegration where a genuine relation exists, despite the non-stationary nature of
the original data, thereby introducing the obverse of nonsense regressions. Further evidence that
many economic time series were better construed as non-stationary than stationary was presented
by Nelson and Plosser (1982), who tested for the presence of unit roots and could not reject that
hypothesis. Closing this circle, Engle and Granger (1987) proved that ECMs and cointegration were
actually two names for the same thing: cointegration entails a feedback involving the lagged levels
of the variables, and a lagged feedback entails cointegration.10

8The change in the equilibriumyt = β1xt − β0 is ∆yt = β1∆xt, so these variables must have steady-state growth
ratesgy andgx related bygy = β1gx. But from (21),gy = α0 + α1gx, hence we can derive thatα0 = −(α1 − β1)gx,
as occurs in (22).

9The resulting distribution is not actually at-statistic as proposed by Student (1908): Section 6 shows that it depends
in part on the Dickey–Fuller distribution. However,t is well behaved, unlike the ‘nonsense regressions’ case.

10Some references to the vast literature on the theory and practice of testing for both unit roots and cointegration
include: Banerjee and Hendry (1992), Banerjee, Dolado, Galbraith and Hendry (1993), Chan and Wei (1988), Dickey
and Fuller (1979, 1981), Hall and Heyde (1980), Hendry (1995), Johansen (1988, 1991, 1992a, 1992b, 1995b), Johansen
and Juselius (1990, 1992), Phillips (1986, 1987a, 1987b, 1988), Park and Phillips (1988, 1989), Phillips and Perron
(1988), and Stock (1987).
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5 Nonsense regression illustration

Using modern software, it is easy to demonstrate nonsense regressions between unrelated unit-root
processes. Yule’s three cases correspond to generating uncorrelated bivariate time series, where the
data are cumulated zero, once and twice, before regressing either series on the other, and conducting
a t-test for no relationship. The process used to generate theI(1) data mimics that used by Yule,
namely:

∆yt = εt where εt ∼ IN
[
0, σ2

ε

]
(24)

∆xt = νt where νt ∼ IN
[
0, σ2

ν

]
(25)

and settingy0 = 0, x0 = 0. Also:
E [εtνs] = 0 ∀t, s. (26)

The economic equation of interest is postulated to be:

yt = β0 + β1xt + ut (27)

whereβ1 is believed to be the derivative ofyt with respect toxt:

∂yt

∂xt
= β1. (28)

Equations like (27) estimated byOLS wrongly assume{ut} to be anIID process independent ofxt.
A t-test ofH0: β1 = 0 (as calculated by a standard regression package, say) is obtained by dividing
the estimated coefficient by its standard error:

tβ1=0 =
β̂1

SE
[
β̂1

] (29)

where:
β̂1 =

(∑
(xt − x)2

)−1 ∑
(xt − x)(yt − y), (30)

and

SE
[
β̂1

]
=

σ̂u√∑
(xt − x)2

. (31)

Whenut correctly describes anIID process, thet-statistic satisfies:

P (|tβ1=0| ≥ 2.0 | H0) ' 0.05. (32)

This, however, is not the case ifut is autocorrelated: in particular, ifut is I(1). In fact, atT = 100,
from the Monte Carlo experiment, we would need a critical value of14.8 to define a 5% rejection
frequency under the null because:

P (|tβ1=0| ≥ 14.8 | H0) ' 0.05, (33)

so serious over-rejection occurs using (32). Instead of the conventional critical value of 2, we should
use 15.
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Why does such a large distortion occur? We will take a closer look at each of the components
in (29) and expand their formulae to see what happens whenut is non-stationary. The intuition is
that althoughβ̂1 is an unbiased estimator ofβ1, soE[β̂1] = 0, it has a very large variance, but the
calculatedSE[β̂1] dramatically under-estimates the true value.

From (31),SE[β̂1] consists of two components, the residual standard error,σ̂u, and the sum of
squares,

∑
(xt − x)2. Whenβ1 = 0, the estimated residual varianceσ̂2

u will in general be lower
thanσ2

u =
∑

(yt − y)2/T. This is because the estimated valueβ̂1 is usually different from zero
(sometimes widely so) and, hence, will produce smaller residuals. Thus:∑

(yt − ŷt)2 ≤
∑

(yt − y)2, (34)

whereŷt = β̂0 + β̂1xt. More importantly, the sum of squares
∑

(xt − x)2 is not an appropriate
measure of the variance inxt whenxt is non-stationary. This is so becausex (instead ofxt−1) is
a very poor ‘reference line’ whenxt is trending, as is evident from the graphs in Figures 1 and 3,
and our artificial example 2. When the data are stationary, the deviation from the mean is a good
measure of how muchxt has changed, whereas whenxt is non-stationary, it is the deviation from
the previous value that measures the stochastic change inxt. Therefore:∑

(xt − x)2 �
∑

(xt − xt−1)2. (35)

so both (34) and (35) work in the same direction of producing a serious downward bias in the
estimated value ofSE[β̂1].

It is now easy to understand the outcome of the simulation study: because the correct standard
error is extremely large, i.e.,σβ1 � SE[β̂1], the dispersion of̂β1 around zero is also large, big
positive and negative values both occur, inducing many big ‘t-values’.

Figure 4 reports the frequency distributions of thet-tests from a simulation study byPcNaive
(see Doornik and Hendry, 1998), usingM = 10, 000 drawings forT = 50. The shaded boxes are
for ±2, which is the approximate 95% conventional confidence interval. The first panel (a) shows
the distribution of thet-test on the coefficient ofxt in a regression ofyt onxt when both variables are
white noise and unrelated. This is numerically very close to the correct distribution of at-variable.
The second panel (denoted b, in the top row) shows the equivalent distribution for the nonsense
regression based on (24)–(29). The third panel (c, left in the lower row) is for the distribution of the
t-test on the coefficient ofxt in a regression ofyt onxt, yt−1 andxt−1 when the data are generated
as unrelated stationary first-order autoregressive processes. The final panel (d) shows thet-test on
the equilibrium-correction coefficientα2 in (21) for data generated by a cointegrated process (so
α2 6= 0 andβ is known).

The first and third panels are close to the actual distribution of Student’st; the former is as
expected from statistical theory, whereas the latter shows that outcome is approximately correct in
dynamic models once the dynamics have been included in the equation specification. The second
panel shows an outcome that is wildly different fromt, with a distributional spread so wide that most
of the probability lies outside the usual region of±2. While the last distribution is not centered on
zero – because the true relation is indeed non-null – it is included to show that the range of the
distribution is roughly correct.
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Figure 4 Frequency distributions of nonsense-regressiont-tests.

Thus, panels (c) and (d) show that, by themselves, neither dynamics nor unit-root non-
stationarity induce serious distortions: the nonsense-regressions problem is due to incorrect model
specification. Indeed, whenyt−1 andxt−1 are added as regressors in case (b), the correct distri-
bution results fortβ1=0, delivering a panel very similar to (c), so the excess rejection is due to the
wrong standard error being used in the denominator (which as shown above, is badly downwards
biased by the untreated residual autocorrelation).

Almost all available software packages contain a regression routine that calculates coefficient
estimates,t-values, andR2 based onOLS. Since the computer will calculate the coefficients in-
dependently of whether the variables are stationary or not (and without issuing a warning when
they are not), it is important to be aware of the following implications for regressions with trending
variables:

(i) Although E[β̂1] = 0, neverthelesstβ1=0 diverges to infinity asT increases, so that
conventionally-calculated critical values are incorrect (see Hendry, 1995, chapter 3).

(ii) R2 cannot be interpreted as a measure of goodness-of-fit.

The first point means that one will too frequently reject the null hypothesis (β1 = 0) when it is
true. Even in the best case, whenβ1 6= 0, i.e., whenyt andxt are causally related, standardt-tests
will be biased with too frequent rejections of a null hypothesis such asβ1 = 1, when it is true.
Hence statistical inference from regression models with trending variables is unreliable based on
standardOLS output. The second point will be further discussed and illustrated in connection with
the empirical analysis.
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All this points to the crucial importance ofalwayschecking the residuals of the empirical model
for (unmodeled) residual autocorrelation. If autocorrelation is found, then the model should be
re-specified to account for this feature, because many of the conventional statistical distributions,
such as Student’st, theF, and theχ2 distributions become approximately valid once the model is re-
specified to have a white-noise error. So even though unit roots impart an important non-stationarity
to the data, reformulating the model to have white-noise errors is a good step towards solving the
problem; and transforming the variables to beI(0) will complete the solution.

6 Testing for unit roots

We have demonstrated that stochastic trends in the data are important for statistical inference. We
will now discuss how to test for the presence of unit roots in the data. However, the distinction
between a unit-root process and a near unit-root process need not be crucial for practical modeling.
Even though a variable is stationary, but with a root close to unity (say,ρ > 0.95), it is often a good
idea to act as if there are unit roots to obtain robust statistical inference. An example of this is given
by the empirical illustration in Section 8.

We will now consider unit-root testing in a univariate setting. Consider estimatingβ in the
autoregressive model:

yt = βyt−1 + εt where εt ∼ IN
[
0, σ2

ε

]
(36)

under the null ofβ = 1 andy0 = 0 (i.e., no determinist trend in the levels), using a sample of
sizeT . BecauseV [yt] = σ2

ε t, the data second moments (like
∑T

t=1 y
2
t−1) grow at orderT 2, so

the distribution ofβ̂ − β ‘collapses’ very quickly. Again, we can illustrate this by simulation,
estimating (36) atT = 25, 100, 400, and 1000. The four panels for the estimated distribution in
Figure 5 have been standardized to the samex-axis for visual comparison – and the convergence
is dramatic. For comparison, the corresponding graphs forβ = 0.5 are shown in Figure 6, where
second moments grow at orderT . Thus, to obtain a limiting distribution for̂β − β which neither
diverges nor degenerates to a constant, scaling byT is required (rather than

√
T for I(0) data).

Moreover, even after such a scaling, the form of the limiting distribution is different from that
holding under stationarity.

The ‘t-statistic’ for testingH0: β = 1, often called the Dickey–Fuller test after Dickey and Fuller
(1979), is easily computed, but does not have a standardt-distribution. Consequently, conventional
critical values are incorrect, and using them can lead to over-rejection of the null of a unit root when
it is true. Rather, the Dickey–Fuller (DF) test has a skewed distribution with a long left tail, making
it hard to discriminate the null of a unit root from alternatives close to unity. The more general test,
the Augmented Dickey-Fuller test is defined in the next section.

Unfortunately, the form of the limiting distribution of theDF test is also altered by the presence
of a constant or a trend in either the DGP or the model. This means that different critical values
are required in each case, although all the required tables of the correct critical values are available.
Worse still, wrong choices of what deterministic terms to include – or which table is applicable
– can seriously distort inference. As demonstrated in Section 2, the role and the interpretation of
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the constant term and the trend in the model changes as we move from the stationary case to the
non-stationary unit-root case. It is also the case for stationary data that incorrectly omitting (say)
an intercept can be disastrous, but mistakes are more easily made when the data are non-stationary.
However, always including a constant and a trend in the estimated model ensures that the test will
have the correct rejection frequency under the null for most economic time series. The required
critical values have been tabulated using Monte Carlo simulations by Dickey and Fuller (1979,
1981), and most time-series econometric software (e.g.,PcGive) automatically provides appropriate
critical values for unit-root tests in almost all relevant cases, provided the correct model is used (see
discussion in the next section).

7 Testing for cointegration

When data are non-stationary purely due to unit roots, they can be brought back to stationarity by
linear transformations, for example, by differencing, as inxt−xt−1. If xt ∼ I(1), then by definition
∆xt ∼ I(0). An alternative is to try a linear transformation likeyt − β1xt − β0, which induces
cointegration whenyt − β1xt − β0 ∼ I(0). But unlike differencing, there is no guarantee that
yt − β1xt − β0 is I(0) for any value ofβ, as the discussion in Section 4 demonstrated.

There are many possible tests for cointegration: the most general of them is the multivariate
test based on the vector autoregressive representation (VAR) discussed in Johansen (1988). These
procedures will be described in Part II. Here we only consider tests based on the static and the
dynamic regression model, assuming thatxt can be treated as weakly exogenous for the parameters
of the conditional model (see e.g., Engle, Hendry and Richard, 1983).11 As discussed in Section 5,
the condition that there exists a genuine causal link betweenI(1) seriesyt andxt is that the residual
ut ∼ I(0), otherwise a ‘nonsense regression’ has been estimated. Therefore, the Engle–Granger
test procedure is based on testing that the residualsut from the static regression model (19) are
stationary, i.e., thatρ < 1 in (2). As discussed in the previous section, the test of the null of a unit
coefficient, using theDF test, implies using a non-standard distribution.

Let ût = yt − β̂1xt − β̂0 whereβ̂ is theOLS estimate of the long-run parameter vectorβ, then
the null hypothesis of theDF test isH0: ρ = 1, or equivalently,H0: 1 − ρ = 0 in:

ût = ρût−1 + εt (37)

or:
∆ût = (1 − ρ)ût−1 + εt. (38)

The test is based on the assumption thatεt in (37) is white noise, and if the AR(1) model in (37)
does not deliver white-noise errors, then it has to be augmented by lagged differences of residuals:

∆ût = (1 − ρ)ût−1 + ψ1∆ût−1 + · · · + ψm∆ût−m + εt. (39)

11Regression methods can be applied to modelI(1) variables which are in fact linked (i.e., cointegrated). Most tests
still have conventional distributions, apart from that corresponding to a test for a unit root.
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We call the test ofH0: 1−ρ = 0 in (39) the augmented Dickey–Fuller test (ADF). A drawback of the
DF-type test procedure (see Campos, Ericsson and Hendry, 1996, for a discussion of this drawback)
is that the autoregressive model (37) forût is the equivalent of imposing a common dynamic factor
on the static regression model:

(1 − ρL)yt = β0(1 − ρ) + β1(1 − ρL)xt + εt. (40)

For theDF test to have high power to rejectH0: 1 − ρ = 0 when it is false, the common-factor
restriction in (40) should correspond to the properties of the data. Empirical evidence has not pro-
duced much support for such common factors, rendering such tests non-optimal. Instead, Kremers,
Ericsson and Dolado (1992) contrast them with a direct test forH0: α2 = 0 in:

∆yt = α0 + α1∆xt + α2 (yt−1 − β1xt−1 − β0) + εt, (41)

where the parameters{α0, α1, α2, β0, β1} are not constrained by the common-factor restriction in
(40). Unfortunately, the null rejection frequency of their test depends on the values of the ‘nuisance’
parametersα1 andσ2

ε , so Kiviet and Phillips (1992) developed a test which is invariant to these
values. The test reported in the empirical application in the next section is based on this test, and
its distribution is illustrated in Figure 4, panel d. Although non-standard, so its critical values
have been separately tabulated, its distribution is much closer to the Studentt-distribution than the
Dickey–Fuller, and correspondingly Banerjeeet al. (1993) find the power oftα2=0 can be high
relative to theDF test. However, whenxt is not weakly exogenous (i.e., when not onlyyt adjusts
to the previous equilibrium error as in (41), but alsoxt does), the test is potentially a poor way of
detecting cointegration. In this case, a multivariate test procedure is needed.

8 An empirical illustration

In this section, we will apply the concepts and ideas discussed above to a data set consisting of
two weekly gasoline prices (Pa,t andPb,t) at different locations over the period 1987 to 1998. The
data in levels are graphed in Figure 7 on a log scale, and in (log) differences in Figure 8. The
price levels exhibit ‘wandering’ behavior, though not very strongly, whereas the differenced series
seem to fluctuate randomly around a fixed mean of zero, in a typically stationary manner. The
bimodal frequency distribution of the price levels is also typical of non-stationary data, whereas
the frequency distribution of the differences is much closer to normality, perhaps with a couple of
outliers. We also notice the large autocorrelations of the price levels at long lags, suggesting non-
stationarity, and the lack of such autocorrelations for the differenced prices, suggesting stationarity
(the latter are shown with lines at±2SE to clarify the insignificance of the autocorrelations at longer
lags).

We first report the estimates from the static regression model:

yt = β0 + β1xt + ut, (42a)

and then consider the linear dynamic model:

yt = a0 + a1xt + a2yt−1 + a3xt−1 + εt. (43)
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Figure 7 Gasoline prices at two locations in (log) levels, their empirical densities and autocorrel-
ograms.

Consistent with the empirical data, we will assume thatE[∆yt] = E[∆xt] = 0, i.e., there are no
linear trends in the data. Without changing the basic properties of the model, we can then rewrite
(43) in the equilibrium-correction form:

∆yt = a1∆xt + (a2 − 1) (y − β0 − β1x)t−1 + εt (44)

wherea2 6= 1, and:

β0 =
a0

1 − a2
and β1 =

a1 + a3

1 − a2
. (45)

In formulation (44), the model embodies the lagged equilibrium error(y − β0 − β1x)t−1, which
captures departures from the long-run equilibrium as given by the static model. As demonstrated in
(22), the equilibrium error will be a stationary process if(a2 − 1) 6= 0 with a zero mean:

E [yt − β0 − β1xt] = 0, (46)

whereas if(a2 − 1) = 0, there is no adjustment back to equilibrium and the equilibrium error is a
non-stationary process. The link of cointegration to the existence of a long-run solution is manifest
here, sinceyt−β0−β1xt = ut ∼ I(0) implies a well-behaved equilibrium, whereas whenut ∼ I(1),
no equilibrium exists. In (44),(∆yt,∆xt) areI(0) when their corresponding levels areI(1), so with
εt ∼ I(0), the equation is ‘balanced’ if and only if(y − β0 − β1x)t is I(0) as well.

This type of ‘balancing’ occurs naturally in regression analysis when the model formulation
permits it: we will demonstrate empirically in (49) that one does not need to actually write the
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Figure 8 Gasoline prices at two locations in differences, their empirical density distribution and
autocorrelogram.

model as in (44) to obtain the benefits. What matters is whether the residuals are uncorrelated or
not.

The estimates of the static regression model over 1987(24)–1998(29) are:

pa,t = 0.018
(2.2)

+ 1.01
(67.4)

pb,t + ut

R2 = 0.89, σ̂u = 0.050, DW = 0.18

(47)

whereDW is the Durbin–Watson test statistic for first-order autocorrelation, and the ‘t-statistics’
based on (29) are given in parentheses. Although theDW test statistic is small and suggests non-
stationarity, theDF test ofut in (47) supports stationarity (DF = −8.21∗∗).

Furthermore, the following mis-specification tests were calculated:

AR(1–7), F(7, 569) = 524.6 [0.00]∗∗

ARCH(7), F(7, 562) = 213.2 [0.00]∗∗

Normality, χ2(2) = 22.9 [0.00]∗∗
(48)

TheAR(1–m) is a test of residual autocorrelation of orderm distributed asF(m,T), i.e. a test of
H0 : ut = εt againstH1 : ut = ρ1ut−1+· · ·+ρmut−m+εt. The test of autocorrelated errors of order
1-7 is very large and the null of no autocorrelation is clearly rejected. TheARCH(m) (see Engle,
1982) is a test of autoregressive residual heteroscedasticity of orderm distributed asF(m,T − m).
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Normalitydenotes the Doornik and Hansen (1994) test of residual normality, distributed asχ2(2). It
is based on the third and the fourth moments around the mean, i.e., it tests for skewness and excess
kurtosis of the residuals. Thus, the normality and homoscedasticity of the residuals are also rejected.
So the standard assumptions underlying the static regression model are clearly violated. In Figure 9,
panel (a), we have graphed the actual and fitted values from the static model (47), in (b) the residuals
ût, in (c) their correlogram and in (d) the residual histogram compared with the normal distribution.
The residuals show substantial temporal correlation, consistent with a highly autocorrelated process.
This is further confirmed by the correlogram, exhibiting large, though declining, autocorrelations.
This can explain why theDF test rejected the unit-root hypothesis above: thoughρ is close to
unity, the large sample size improves the precision of the test and, hence, allows us to reject the
hypothesis. Furthermore, the residuals seem to be symmetrically distributed around the mean, but
are leptokurtic to some extent.
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Figure 9 Actual and fitted values, residuals, their correlogram and histogram, from the static
model.

To evaluate the forecasting performance of the model, we have calculated the one-step ahead
forecasts and their (calculated) 95% confidence intervals over the last two years. The outcome
is illustrated in Figure 10a, which shows periods of consistent over- and under- predictions. In
particular, at the end of 1997 until the beginning of 1998, predictions were consistently below
actual prices, and thereafter consistently above.12

12The software assumes the residuals are homoscedastic white-noise when computing confidence intervals, standard
errors, etc., which is flagrantly wrong here.
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Figure 10 Static and dynamic model forecasts, the equilibrium error, and its relation to∆pa,t.

Finally, we have recursively calculated the estimatedβ0 andβ1coefficients in (47) from 1993
onwards. Figure 11 shows these recursive graphs. It appears that even if the recursive estimates of
β0 andβ1are quite stable, at the end of the period they are not within the confidence band at the
beginning of the recursive sample (and remember the previous footnote). We also report the 1-step
residuals with±2SE, and the sequence of constancy tests based on Chow (1960) statistics (scaled
by their 1% critical values, so values> 1 reject).

Altogether, most empirical economists would consider this econometric outcome as quite un-
satisfactory. We will now demonstrate how much the model can be improved by accounting for the
left-out dynamics.

The estimate of the dynamic regression model (43) with two lags is:

pa,t = 0.001
(0.3)

+ 1.33
(36.1)

pa,t−1 − 0.46
(12.5)

pa,t−2 + 0.91
(23.9)

pb,t − 1.12
(14.8)

pb,t−1 + 0.34
(6.4)

pb,t−2 + εt

R2 = 0.99, σ̂ε = 0.018, DW = 2.03
(49)

Compared with the static regression model, we notice that theDW statistic is now close to 2, and
that the residual standard error has decreased from 0.050 to 0.018, so the precision has increased
approximately 2.5 times. The mis-specification tests are:

AR(1–7), F(7, 563) = 1.44 [0.19]
ARCH(7), F(7, 556) = 10.6 [0.00]∗∗

Normality, χ2(2) = 79.8 [0.00]∗∗
(50)
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Figure 11 Recursively-calculated coefficients ofβ0 andβ1 in (41) with 1-step residuals and Chow
tests.

We note that residual autocorrelation is no longer a problem, but there is still evidence of the resid-
uals being heteroscedastic and non-normal. Figure 12 show the graphs of actual and fitted, residuals,
residual correlogram, and the residual histogram compared to the normal distribution. Fitted and
actual values are now so close that it is no longer possible to visually distinguish between them.
Residuals exhibit no temporal correlation. However, with the increased precision (the smaller re-
sidual standard error), we can now recognize several ‘outliers’ in the data. This is also evident from
the histogram exhibiting quite long tails, resulting in the rejection of normality. The rejection of
homoscedastic residual variance seems to be explained by a larger variance in the first part of the
sample, prevailing approximately till the end of 1992, probably due to the Gulf War.

As for the static regression model, the one-step ahead prediction errors with their 95% confid-
ence intervals have been graphed in Figure 10b. It appears that there is no systematic under- or
over-prediction in the dynamic model. Also the prediction intervals are much narrower, reflecting
the large increase in precision as a result of the smaller residual standard error in this model.

It is now possible to derive the static long-run solution as given by (44) and (45):

pa,t = 0.008
(0.3)

+ 0.99
(22.8)

pb,t tur = 8.25∗∗ (51)

Note that the coefficient estimates ofβ0 andβ1 are almost identical to the static regression model,
illustrating the fact that theOLS estimator was unbiased. However, the correctly-calculated standard
errors of estimates produce much smallert-values, consistent with the downward bias ofSE[β̂] in



25

1990 1995

−.75

−.5

−.25

0 Actual 
Fitted 

1990 1995

−2.5

0

2.5

Residual 

0 5 10

−.5

0

.5

1

Correlogram

−4 −2 0 2 4

.2

.4

Density
N(0,1) 

Figure 12 Actual and fitted values, residuals, their correlogram and histogram for the dynamic
model.

the static regression model, revealing an insignificant intercept. The graph of the equilibrium error
ut (shown in Figure 10c) is essentially the log of the relative price,pa,t − pb,t. Note thatut has a
zero mean, consistent with (46), and that it is strongly autocorrelated, consistent with (22). From
the coefficient estimate of theecmt−1 below in (52), we find that the autocorrelation coefficient
(1 − α2) in (22) corresponds to 0.86, which is a fairly high autocorrelation. In the static model,
this autocorrelation was left in the residuals, whereas in the dynamic model, we have explained it
by short-run adjustment to current and lagged changes in the two gasoline prices. Nevertheless, the
values of theDF test on the static residuals, and the unit-root test in the dynamic model (tur in (51))
are closely similar here, even though the test for two common factors in (49) rejects (one common
factor is accepted).

Finally, we report the estimates of the model reformulated in equilibrium-correction form (44),
suppressing the constant of zero due to the equilibrium-correction term being mean adjusted:

∆pa,t = 0.46
(12.5)

∆pa,t−1 + 0.91
(24.3)

∆pb,t − 0.34
(6.5)

∆pb,t−1 − 0.13
(8.3)

ecmt−1 + εt

R2 = 0.69, σ̂ε = 0.018, DW = 2.05

(52)

Notice that the corresponding estimated coefficients, the residual standard error, andDW are
identical with the estimates in (49), demonstrating that the two models are statistically equival-
ent, though one is formulated in non-stationary and the other in stationary variables. The coefficient
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of −0.13 on ecmt−1 suggests moderate adjustment, with 13% of any disequilibrium in the relative
prices being removed each week.13 Figure 10d shows the relation of∆pa,t to ecmt−1.

However,R2 is lower in (52) than in (47) and (49), demonstrating the hazards of interpretingR2

as a measure of goodness of fit. When we calculateR2 = Σ(yt − ŷt)2/Σ(yt − y)2, we essentially
compare how well our model can predictyt compared to a straight line. Whenyt is trending, any
other trending variable can do better than a straight line, which explains the highR2 often obtained
in regressions with non-stationary variables. Hence, as already discussed in Section 5, the sum of
squaresΣ(yt − y)2 is not an appropriate measure of the variation of a trending variable. In contrast,
R2 = Σ(∆yt − ∆̂yt)2/Σ(∆yt − ∆y)2 from (52) measures the improvement in model fit compared
to a random walk as a reasonable measure of how good our model is (although thatR2 would also
change if the dependent variable becameecmt in another statistically-equivalent version of the same
model).

Finally, we report the recursively-calculated coefficients of the model parameters in (52) in Fig-
ure 13. The estimated coefficients are reasonably stable over time, although a few of the recursive
estimates fall outside the confidence bands (especially around the Gulf War). Such non-constancies
reveal remaining non-stationarities in the two gasoline prices, but resolving this issue would neces-
sitate another paper.....
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Figure 13 Recursively-calculated parameter estimates of the ECM model.

13The equilibrium-correction errorecmt−1 does not influence∆pb,t in a bivariate system, so that aspect of weak
exogeneity is not rejected.
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9 Conclusion

Although ‘classical’ econometric theory generally assumed stationary data, particularly constant
means and variances across time periods, empirical evidence is strongly against the validity of that
assumption. Nevertheless, stationarity is an important basis for empirical modeling, and infer-
ence when the stationarity assumption is incorrect can induce serious mistakes. To develop a more
relevant basis, we considered recent developments in modeling non-stationary data, focusing on
autoregressive processes with unit roots. We showed that these processes were non-stationary, but
could be transformed back to stationarity by differencing and cointegration transformations, where
the latter comprised linear combinations of the variables that did not have unit roots.

We investigated the comparative properties of stationary and non-stationary processes, reviewed
the historical development of modeling non-stationarity and presented a re-run of a famous Monte
Carlo simulation study of the dangers of ignoring non-stationarity in static regression analysis. Next,
we described how to test for unit roots in scalar autoregressions, then extended the approach to tests
for cointegration. Finally, an extensive empirical illustration using two gasoline prices implemented
the tools described in the preceding analysis.

Unit-root non-stationarity seems widespread in economic time series, and some theoretical mod-
els entail unit roots. Links between variables will then ‘spread’ such non-stationarities throughout
the economy. Thus, we believe it is sensible empirical practice to assume unit roots in (log) levels
until that is rejected by well-based evidence. Cointegrated relations and differenced data both help
model unit roots, and can be related in equilibrium-correction equations, as we illustrated. For mod-
eling purposes, a unit-root process may also be considered as a statistical approximation when serial
correlation is high. Monte Carlo studies have demonstrated that treating near-unit roots as unit roots
in situations where the unit-root hypothesis is only approximately correct makes statistical inference
more reliable than otherwise.

Unfortunately, other sources of non-stationarity may remain, such as changes in parameters (par-
ticularly shifts in the means of equilibrium errors and growth rates) or data distributions, so careful
empirical evaluation of fitted equations remains essential. We reiterate the importance of having
white-noise residuals, preferably homoscedastic, to avoid mis-leading inferences. This emphas-
izes the advantages of accounting for the dynamic properties of the data in equilibrium-correction
equations, which not only results in improved precision from lower residual variances, but delivers
empirical estimates of adjustment parameters.

Part II of our attempt to explain cointegration analysis will address system methods. Since coin-
tegration inherently links several variables, multivariate analysis is natural, and recent developments
have focused on this approach. Important new insights result, but new modeling decisions also have
to made in practice. Fortunately, there is excellent software available for implementing the meth-
ods discussed in Johansen (1995a), including CATS in RATS (see Hansen and Juselius, 1995) and
PcFiml (see Doornik and Hendry, 1997), and we will address the application of such tools to the
gasoline price data considered above.
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