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2.3 Autoregressive processes. Direct approach
We want to study the difference equation
Xt =a1X;—1 + -+ apXi—p + uy, (2.8)
whereu;, is a white noise process belongingfd (2, F, P). We assume that
ap #0 and o2 # 0.

By a solution we mean process {w;, ¢ € Z}, belongingto L?(£2, F, P), such
that (2.8) is fulfilled whenx, is replaced byw;.

Analysis of equation (2.8), in which a stochastic variable is determined as a
linear combination of its past values plus an uncorrelated “shock”, hardly needs
a motivation. Indeed, autoregressive processes naturally emerge in (a) micro- and
macroeconomic analysis as a result of both models based on routine behaviors and
models based on intertemporal optimization, and (b) modeling and forecasting of
empirical processes.

Let us begin by stating a well known principle which is valid for all linear
equations (the proof is elementary and is left to the reader).

Proposition 2.3 Let w; be a solution to (2.8). Then all the solutions of (2.8) are
obtained asv; + z,, wherez, is any process belonging tb2(£2, F, P) which is a
solution of the homogeneous equation

Xt =a1X;—1 + -+ apxi—p. (2.9)
Thus analysis of (2.8) breaks up into the search for a particular solution and the
general solution of the homogeneous equation.

2.3.1 Thecasep =1

Let us start with the first order equation and its companion homogeneous equation:

Xt = ax;—1 + us (2.10)
Xy = adAXi—1. (211)

As we will see, this problem contains in an elementary version all the notions that
must be developed to deal with the general case.

Firstly observe that it is a solution of (2.11) andy = 4 € L%(2, F, P),
thenz, = Aa’. Thus we only need a particular solution of (2.10). Let us further
specify the problem as that of finding a weakly stationary solution. (Note that for
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|a| < 1 a stationary solution has already been found, see the discussion of process
(1.5) in Section 1.1.)

Assume that a weakly stationary solution of (2.10) exists and denoteuitby
Consider the projection af; on the spacé{“,

o
wy = Proj(w:|H*) + Re = Y byuts—i + Ry, (2.12)

k=—o0

whereR; L u,y forall k € Z, andb,, = LL21=k . Sinceu, ; = w,_ —
g

u
aw;_g_q1, Sothatw; - u;_; = w; - (w,_p —aw,_j_1), and sincew; is stationary
by assumptionw; - u;_ = E(w;w;_;) —aE(wsw;_;_1) is independent of, so
that the last equation can be rewritten as

o0
we= Y bru—x + Ry, (2.13)

k=—0o0

whereby, is square summable (by Proposition 164, b,% is the squared norm of
the projection ofw,; on H*). Substituting in (2.10),

> (b —abg_y)usj —ur = —(R; —aR;_y).

k=—00
SinceR; | u,_y for all k, this implies

oo

Z (b —abg—us— —ur =0 (2.14)
k=—00

Rt — aR,_l = 0. (215)
Sinceu, is an orthogonal sequence (2.14) is equivalent to

Ofork #0
by —aby_, = 2.16
ke @0k {lfork:O. (2.16)

This can be interpreted as a difference equation for sequences of real numbers.
Note that (i) the left hand side is identical to the left hand side of (2.10), (ii) we
are looking for solutions that arsquare-summable sequences. Forgetting for the
moment square summability, the solutions of (2.16) are all obtained as one partic-
ular solution plus any solution of the homogeneous equabipr ab;_; = 0. To
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determine the latter observe thatifs the value taken fok = 0, thenca* is the
value at anyk. A particular solution of (2.16) is easy to find. Set

v 0 fork <0
K7 ) ak for k = 0,

so that the general solution is the sequence
cak fork <0
by = (2.17)

ak + cak fork > 0,

depending on the parameterNow we have to impose square summability. As the
reader can easily check, (i) || < 1, square summability is equivalent to= 0;
(i) if || > 1, we must set = —1; (iii) if |a|] = 1 none of the solutions is square
summable.

The above results are illustrated in Figure 2.3 for three real values &for
a = .8 the solution is obtained by setting = 0. Fora = 1.2 the particular
solution (starred) diverges and is therefore not square summable. Settingl
the solution of the homogeneous equation correspondirig00 (dotted) offsets
the particular solution, so that the square-summable solution (circled) equals the
solution of the homogeneous equation for< 0, and equals zero fokt > 0.
Lastly, fora = 1 the particular solution (starred) is not square summable, but the
only solution of the homogeneous equation offsetting the ones corresponding to
k > 0 produces a non square-summable sequenck fol0.

a=12 o
c=-1 ***
o % * ok ok K Kok K ok
| %00 Wé—e—e—e—e—e—e—e— gkl L ——————————
0 k OOOOOQ ko ... 9 ------- I-C
a = 8’ c = “e a =
FIGURE 2.3

Now let us go back to (2.13). Observe firstly that stationarityugf and of
the moving average at the right hand side, plus the condifgnl u,_; for all
k, imply that R, must be stationary (orthogonality implies that the autocovariance
function of w; is the sum of the autocovariance functions of the two components
at the right hand side). On the other hand, all the solutions of (2.15) take the form
R; = Ad’, whereAd e LZ(.Q, F, P), which is not a stationary process|if| = 1,
unless4 = 0. Thusif|a| # 1, the moving average at the left hand side of (2.13),



2.3. AUTOREGRESSIVE PROCESSES. DIRECT APPROACH 55

whereby, is the unique square-summable solution of (2.16), is the only stationary
solution of equation (2.10).

Proposition 2.4 Consider the difference equation (2.10). Then:
() If |a| < 1 the only stationary solution is

2
Wy =Us+aus_1 +a " Us—p +---,

and the general solution is; + Aa’, whereA is any stochastic variable belonging
to L2(2, F, P).
(i) If |a| > 1 the only stationary solution is

-1 -2
Wy =—ad U4l — a4 "Up42 — ",

and the general solution is; + Aa’, whereA is any stochastic variable belonging
to L2(2, F, P).
(iii) If |a| = 1, thatisa = ¢'?, there is no stationary solution. The process

S adfu g ift >0
wy = 0ifr=0 (2.18)

Zs_tola STy, gyqift <0

is a particular solution. The general solutionig+ Ae’?’, where4 is any stochas-
tic variable belonging ta_2(£2, F, P). Note that if E(4) = 0 the processie’?’
is stationary (see Example 1.12).

ProoOF For (i) and (ii), we have already proved that is the only stationary
solution of (2.10). The general solution is obtained by adding a solution of equation
(2.11). For (iii), the reader can easily check that the particular solution (2.18)
fulfills equation (2.10). In the familiar cage= 1, the general solution is

A+ usift>0
w;={Aifr=0 (2.19)
A=Y u g if <0,

where 4 is any stochastic variable ifi?(£2, F, P). Note that vagw,) — oo for
|t| = oco. The non-stationary process (2.19) is knowrrasdomwalk.
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Observation 2.4 The particular solution (2.18), witlwy = 0 almost surely, has
been chosen only for convenience. Obviously, considering for simplicity the case
a = 1, the process

Wro+2 = Ugg+1 T Ugy+2
wt0+1 - Z’ll‘()
w,y = 0 (2.20)
wt()—l = _ut()
wt()—2 = _ut() - ut()—l

for any¢, € Z, might have been selected. Note that this process can be obtained
by suitably specifyingd in (2.19).

Observation 2.5 The process (2.18) belongs & but is not a moving average of
u; (itis not even stationary).

Observation 2.6 Note that the homogeneous equation (2.11) always has a trivial
stationary solution, namely the process whose stochastic variables are zero with
probability one. Note also that (2.11) has non trivial stationary solutions if and
only if equation (2.10) has no stationary solutions, that is whdn= 1.

Lastly, consider the equation
Xt = ax;—1 + ¢ + uy, (2.22)

wherec € R. If |a| < 1 the stationary solution is

c
Zp = ——tur+avg—1+---,
1—a

and the general solutionis + Aa’. If |a| > 1 the stationary solution is

4

-1 -1
Zr = —a4 Uy —d Uy — 0,

1—a

and the general solutionis + Aa’. If |a| = 1 a particular solution isv, + A,
wherew, is determined as in (2.18) and

e batifr>0
ht - 0 |f t = 0
—e Y e if e < 0.
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Fora = 1 the general solution is

A+cl+Z§;10u,_s ift >0
wy = AIfle
A+cl—Z;_01 Up—gy1 if 1 <0,

which is known agandomwalk with drift.

2.3.2 The general autoregressive process

Let us begin with the homogeneous equation (2.9) and suppose that the solutions
we are looking for are two-sided sequences of complex numfoers € Z}. Itis

easily seen that such solutions form a vector subspace of the space of all sequences,
i.e. that by summing two solutions or multiplying a solution by a complex number

we obtain a solution; call such a subspace. Moreover, given the values of a
solutionforr = 0, 1, ..., p — 1, the solution is determined for adl To see this

use equation (2.9) to determine the solutiom at p, thent = p + 1, and so on.

Then, sincer, # 0 by assumption, rewrite (2.9) as_, = a;l (—xs+ayx—1 +

R ap_lx,_p+1), that is

-1
X =y (=Xp4p +a1Xpyp1 + 00+ dp—1X141),

to determine the solution at= —1, + = —2 and so on. Thus the dimension of
V cannot be greater tham. On the other hand, the following ape independent
solutions:

t=-—1 tr=0 t=1 [:p—l t=p

ap_1a,' 1 0 0 ap

apaa,’ 0 1 0 apy - (2.22)
—a;l 0 0 1 ap

so that the dimension of is exactly p.

Observation 2.7 Of course the “initial conditions” can be given for any sequence
to, to+1, ..., to + p— linstead of0, 1, ..., p — 1, but not for any sequence
to, t1, ..., tp—1. For example, if equation (2.9) is; — x;,—» = 0, we cannot
choose values fary andx, as we like.

However, thep sequences (2.22) do not seem very useful if our problem is
the behavior of a solution when — +oo or ¢t — —oco. Much more promising
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sequences can be obtained by assuming, in analogy with thepcasé, thata!,

with & # 0, is a solution of (2.9), thatig’ — aja’~! —--- —a,a’~P = 0. This
implies that
o« P@f —aaP ! —..—a,) = 0. (2.23)
i.e. thatw is a root of the polynomial
f(x)=xP —axP~! —...—qa,, (2.24)

which is known as theharacteristic polynomial of the difference equation (2.9).
As the converse is also obviously true, we conclude tHat a solution of (2.9) if

and only if ¢ is a root of its characteristic polynomial. If all the roots ¢fx) are

of multiplicity one, i.e. if there arep rootsa;, with o; # o for j # k, then the

p solutionSaj’. are independent. This is easily seen by putting on the columns of a

p X p matrix the values taken by the solutiom'f.* atr=0,1,..., p—1:
o1 (%) ap
Otf)_l aé)—l a[[))—l

This is well known as a Vandermonde matrix, whose determinant does not vanish
if the a’s are distinct (see, e.g., [12], p. 35). Thus all the solutions of equation (2.9)
can be written as

crof + e + -+ cpap,

and their asymptotic behavior can be easily studied.

In general howevelf(x) hasq distinct rootsey, oz, ..., g, g < p, with
multiplicitiesry, r2, ..., r4, suchthaty +r, +---+r, = p,and
fx) = —a)(x —az)?--(x —ag)". (2.25)

Proposition 2.5 Assume thatf'(x) admits factorization (2.25). Then
() The following sequences of complex numbers

il (2.26)

forj=1,...,9,ands; =0,...,r; — 1, arep solutions of equation (2.9).
(ii) The p solutions (2.26) are independent.
(i) Let gp,, h = 1,..., p, be an ordering of the sequences (2.26). The sequences

c181r + 282 + -+ Cp&pt, (2.27)

where thec,’s are complex numbers, are solutions of (2.9); conversely; ifs
a solution of (2.9), therr; has the form (2.27) with the coefficientg uniquely
determined by;.
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We do not give a proof of this proposition. Note that (iii) is a consequence of (i)
and (i), given that the spadé has dimensiom. To provide an intuitive motivation
for the emergence of solutions (2.26) when some of the roots are multiple, consider
the casep = 2, that is
Xy =a1Xr—1 + azx;—z, (2.28)

and suppose that
X2 —aijx —ar = (x —ay)(x — ap),

with @ # . In this case the solutions (2.26) a#é¢ andc. Another couple of
solutions is , ,
r % T
a, —.

0y — g

The latter are independent as the matrix with their values-at), 1 onthe columns

IS
1 0
(al 1) . (2.29)

Now leta, — aq (note thate; = a1 + oy anda, = —aja,, so thatw, — oy is
obtained ifa; — 2y anda, — —a?). We have:

t t t t

af —« a; + (@ —a))]f —« _

2 _ | ] L — ot (2.30)
oy — oy 0y — 0y

Thus in the limit the sequences
t

of, 1ol

emerge as candidate solutions (the second has been obtained by multiplying the
limitin (2.30) by ;). To see thatai is a solution of equation (2.28), fer, = oy,
remember that when the roots are coincidents a root of //(x) as well, that is

a?

1~ d1a —dazy =

0
20{1 —dy = 0. (231)

On the other hand, substituting’ into (2.28) gives
lai —al(l—l)ai_l —az(l—Z)ai_z = lai_z(af—alal—a2)+ai_2(a1a1 +2a,).

Vanishing of the first term on the right hand side is ensured by the first equation on
(2.31). For the second, note thatr; + 2a, = 0 is obtained by summing the first
line in (2.31), multiplied by—2, to the second multiplied by; .

Lastly, as the determinant (2.29) does not changeaspproaches, the
solutionsa andza~! are independent. Therefotd andsa! are independent
(but this can be seen directly of course).
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Exercise 2.2 Consider the equation
_ 2 3
Xy = 3ax;—1 —3a°X;—3 + a’ x;—3.

The characteristic polynomial is*> — 3ax? 4 3a?x — a® = (x — )3, so that all
the solutions are
c1d' + cxtd' + e3t’d’.

Determine the solutiow,; such thatcg = x; = x, = 1.

For a proof of statements (i) and (ii) see [6], pp. 107-10. Another proof,
requiring fairly hard but highly rewarding work, can be found in [11], Chapters 5
and 6 ([11] deals with differential equations but the analysis in Chapters 5 and 6 can
be adapted with no relevant change to difference equations). The latter deserves a
short informal description. To start with, define:

aq as e ap—l ap
xx’ | 0 0

xo=| TN a=f0o 1 0 0] @3
Yi—p+1 0 0 -« 1 0

then transform (2.9) into the vector equation
X = AX;—. (2.33)

Obviously the solution of (2.9) is nothing other than the first coordinate of the solu-
tion of (2.33). Therefore problem (2.9) becomes a particular case of the problem of
solving a first-order linear system of difference equations. On the other hand, given
Xy (thatis, givenxg, x_y, ..., x_p11), the solution of 2.33 is\; = A’ X, so

that the behavior of all solutions of (2.33) can be analyzed by studying the powers
of the matrixA4. This can be done, as shown in [11], by using the Jordan form of
A, which depends on the eigenvalues4fand their multiplicity (it is easily seen

that the eigenvalues ofl are the roots of the characteristic polynomial 2.24). To
give an illustration let us assume that= 2. If the roots are distinct the Jordan
form is

_ o 0 -1
A_B(O az)B , (2.34)

A’:B(O‘i 0,)3‘1,
0 o

so that
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with the solutions of (2.9) emerging as linear combinationstbanda’. On the
other hand, if the roots are coincident the Jordan form is

_ o 0 -1
A_B(l al)B (2.35)

(the matrix4 cannot be diagonalized), so that
ol 0\ ,_
A' =B (m,l_l a,) B~
1 1
with the solutions of (2.9) emerging as linear combinationepaindra’.

Exercise 2.3 In the two-dimensional case the matrixdefined in (2.32) is

ap dp
1 0)°

Leto; anda, the eigenvalues od, i.e. the roots ok 2—a;x—a,. If v = (v v2)'is
an eigenvector off corresponding ter;, show thaty; = «;v,. As a consequence,
if @1 # ay there are two distinct eigenvectors @f call themv andw, and

(U] wl) (U] wl) (Otl 0)

A - b

Uy Wi Uy Wi 0 o

which is immediately transformed into (2.34).df = «, there is only one eigen-

vector, call itw. Lettingv be any vector, independent ef, we have

Av = Bv + dw, Aw = aqw,

() =G o) 2)

A = )

Uy W» v, wy ) \§ o

Prove tha{s = «;. Moreover, show that you can choose,andependent ofv, in
such a way thad = 1, thus obtaining (2.35), but not in such a way tliat 0.

that is

The asymptotic behavior of the solutions (2.26) can be very easily described.
Consider the sequene&o!, wherem is a non-negative integer, and letbe a
positive real number. An elementary exercise shows that

im "a'| [0 fory > |«
t—>+o0 ¥y |4ooforo < y < |of
(2.36)

lim -
t—>—o00 Yy 0 for0<y<|a

"ot {-1—00 fory > ||
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Thus, the sequence®a’ behave asymptotically almost in the same way as expo-
nential sequences. For exampleldf < 1, the sequence”«’ tends to zero for

! — +oo faster thaty’ for anyy > |«|, and slower thany’ for anyy between)
and|«|.

Exercise 2.4 Use (2.36) to prove that the sequences

Mo, t=0,1,2, ..., MBl, =0, -1, =2, ...

are square summablelif| < 1 and|g| > 1 and are not square summabléif > 1
and|B| < 1. Prove thatifiy| = 1 then neither of the sequences

Myt 1=0,1,2, ..., Myt =0, -1, =2, ...
is square summable.

Now let us go back to our original problem, that of finding the processéb®-
longing to L2(£2, F, P) that fulfill equation (2.9). No difficulty arises to produce
the stochastic-process version of the reasonings applied above to the sequences of
real numbers solving (2.9). Firstly, a process solving (2.9) is completely deter-
mined by the values taken foer= 0, ..., p — 1. Thus the vector space, callit,
of all processes solving (2.9) has dimensjonSecondly, the sequences (2.26) can
be interpreted as processes whose stochastic variables are constant with probability
one. By Proposition 2.5, they apelinearly independent vectors df. The follow-
ing statement is just as elementary as deriving (iii) from (ii) and (i) in Proposition
2.5.

Proposition 2.6 Given Ay € L2(2, F,P),k =1,..., p, the stochastic process

A8 + A28 + -+ Apgps (2.37)

is a solution of (2.9). Conversely, if; is a solution of (2.9), then, has the form
(2.37), with the stochastic variables, uniquely determined by, .

Having found all the solutions of equation (2.9), let us determine a particular
solution of (2.8). Using the same argument of the previous section the reader will
easily re-obtain equation (2.13). Substituting into (2.8),

o0

> bk —arbg_y = —apbi_p)u;j — s =0 (2.38)
k=—00

Rt—alR,_l —---—al,R,_l, =0, (239)



2.3. AUTOREGRESSIVE PROCESSES. DIRECT APPROACH 63

and therefore

Ofork #0

2.40
1fork = 0. ( )

bk —albk_l —---—apbk_,, = {

We look for square summable solutions of (2.40)5,1fis a particular solution, the
general solution of (2.40) is
bi = br + [c181x + 282k + -+ + Cp&pi]-
A particular solutionb; is determined as follows. Let
By =digk +dagap + -+ dpgpk (2.41)

be the solution of the homogeneous equation (2.9) such that

By=1,B_1=0,...,B_,11 =0
(obviously taking0, —1, ..., —p + 1 instead of0, 1, ..., p — | isimmaterial,
see Observation 2.7). Then
vy JOifk <0
| B if k >0,

so that the general solution is
_Jagik ot 8pk if k<0 | (2.42)
(dy +c1)guk + -+ (dp + ¢p)gpk if k > 0.

Now assume that none of roots of the characteristic polynomial has unit modu-
lus. To determine, remember that the solutiogyx equalsksf‘aj’.‘ for someq;
ands; < rj. Using Exercise 2.4, it easy to show that the only square-summable
solution is obtained by setting

=1 O Mal<l (2.43)
—dy if || > 1.

To see this remember that the sum of square summable sequences is square sum-
mable (see Section 1.3.8), see also Exercise 2.6 below). Another easy consequence
of Exercise 2.4 is that equation (2.39) has no non-trivial stationary solution. Thus
equation (2.8) has exactly one stationary solution. In conclusion
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Proposition 2.7 Assume that none of the roots of the characteristic equation has
unit modulus. Then equation (2.8) has exactly one stationary solution

o0
Wy = Z brus—,

k=—00

where the coefficients; are determined by (2.42), wiity, determined in (2.41)
andcy in (2.43). The general solution of (2.8) is

wy + A181e + A282t + -+ Ap&pt»

where thed;,’s are any stochastic variables belonging/td(2, F, P).

Example 2.6 Consider the equation
Xy = 2.5Xt_1 — Xf—n + Uy,

which has characteristic equatio — 2.5x + 1. The roots ar@ and0.5. Setting
By = 0.5Kd; + 2%d,, we findd, = —1/3 andd, = 4/3. Thus

| —@y3)2k itk <o
| =@ay/3)0.5%if k > o,

and the stationary solution is

wr = —(1/3) (r +0.5u,—1 +0.52u,5 +---)
—(4/3) (0.5us41 4+ 0.5%upqs +---).

Exercise 2.5 (Real Coefficientsghow that if the coefficients of (2.8) are real then
the moving averagev; has real coefficients. In particular, determine the coeffi-
cients ofw; whenp = 2 and the roots of the characteristic equation are complex
(and conjugate), both when their modulus is greater and when it is smaller than
unity. Hint: If p = 2 and the roots are complex conjugate then

g1 = ple'? = pl(cospr + i singr), gu = ple ' = p'(cospr — i singtr).
Another set of independent solutions, that eeal, is

g1t + gor

81t — 82t
5 —

= o' singzr.
> p" sing

= p' cos¢t,
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Exercise 2.6 Assume, with no loss of generality, that the modulicof, ... oy,
are smaller than 1, while the moduli af,+;. ..., a4 are greater than 1. Letbe
the maximum among the numbers

—1 —1
leer ], ooy lomls [emat] s ooy g™

Prove that the coefficients, decline faster thap!*!, that is

for anyy such thatr < y < 1. Equivalently, prove that there exiss, > 0 such
that|by| < C, vk, for anyy such thatr <y < 1.

Exercise 2.7 Prove that if all the roots of the characteristic equation are smaller
than 1 in modulus, then the solution is one sided in the present and pagt of

Xy = Uy +b]l/lt_] + -

(note thathy = 1); if all the roots are greater than 1 in modulus, then the solution
is one sided in the future of;:

X¢=b_qusyr +bstipqin+---.
In all other cases the solution is two sided.

Proposition 2.8 If at least one of the roots of the characteristic equation has unit
modulus then equation (2.8) has no stationary solutions.

PROOF Let us go back to the sequend, i.e. to the solution of equation (2.9)
with the condition

Bo=1,B_1=0,.... B_py; =0.

The coefficientsi;, are determined by

g10 g0 d, 1
g1,-1 - &p—1 d> e
g1,-p+1 **° &p—p+1) \dp 0
that is )
d, g10 £p0 1 Dy,

dy 81,-1 8p,—1

o
R~
=

dp 81,—p+1 °° &p,—p+1 0 Dy,
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where theD;;’s are the entries of the inverse matrix appearing above. Now, assume
thatgy, = "1 1o} (so that ifa; is simplegyx = o}). The entryDy; is a ratio
whose numerator is the determinant of

82,1 8p,—1

82,—p+1 " 8p,—p+1

Considering the difference equation whose characteristic polynomial is

& =(x — al)rl_l(x —0ay) 2 (x — ),
X — 0O
its solutions (2.26), fok = —1, =2, ..., —p + 1, are the columns o#/. Thus

det(M) # 0 andD;; # 0. The above reasoning shows that no root of the charac-
teristic polynomial can be absent from solution (2.41), and therefore frpnBut

if a root has unit modulus it is impossible to get rid of it by appropriately choosing
¢y in (2.43) (see also the cage= 1 in Figure 2.3). The proof is complete.

Exercise 2.8 Generalize Observation 2.6: Equation (2.9) has non-trivial stationary
solutions if and only if equation (2.8) has no stationary solutions, that is, if and
only if the characteristic equation has some unit roots. In that case the stationary
solutions of (2.9) have the form 1.35:

A1€i¢lt + A2€i¢2t + -+ Anei¢nta
where the numbers'?; are the unit modulus roots of the characteristic equation

(see Exercise 1.26), and the stochastic varialdlgsire zero-mean and mutually
orthogonal.

Exercise 2.9 Consider the equation
Xy = 2X4—1 — Xz—2.
Determine its general solution. Observe that the equation can be rewritten as
(X —Xr—1) = (Xp—1 — X—2) + Uy,

so that you can use (2.19) to determine— x;—1.
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2.3.3 Autoregressive equations with initial or “final” conditions

Up until now we have studied solutions of equation (2.8) fax Z and established
the conditions under which a stationary solution exists. Let us now again consider
the autoregressive equation

Xt =a1X;—1 + - apXi—p + Uy, (2.44)

where{u;, t € 7} is a white noise belonging th2(£2, F, P), but limit the validity
of (2.44) tor > ¢y + p, so that a solution is a sequence

Ytgr Vig+1, -5 Vtg+p> Veig+p+1s ---

Propositions 2.3 and 2.6 apply with no maodifications, so that all the solutions of
(2.44) are
we + A1g1; + A2gor + -+ Ap&pts

wherew, is a particular solution. For the latter set, for 1,

t—ty

Wy = Z bku,_k, (2.45)

k=—00

where the coefficients;, are determined as in (2.42), with the coefficientsuch

that lim;_, _, b = 0. Note that here the coefficienhg are not necessary unique
(they are unique in the previous section under the assumption that no roots has unit
modulus and that the coefficients are determined by (2.43)). For example, if

Xy = 2X¢—1 +uy,
then, fort > 1y,
Wiy = Uy +21/lt_] +---+2t_t°ut0 (246)
is a particular solution as well as

1 1
War = =51 = U2 +e

To obtain a unique solution the problem must be further specified. Here are two
important cases.

Cask 1. Backward solution with given initial conditions.
The stochastic variables

Xtg> Xtg+1s * s Xtg+p—1
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aregiven (in particular they may be constant with probability one) d@helsolution
results by iterating (2.44):

Xgp = Uigrp T @1 X0+ p—1 F o dpg]
Xtgtp+1 = Usgtp+1 +[a1Xe+p + o apXy]
= Ugytpt1 T arUg+p (a7 + a2)Xeg4p—1 + -]

This solution can also be obtained by choosigg= 0 forallh = 1,2,..., p, so
that the coefficient$; are zero forkk < 0 (solution (2.46) in the example above).
Oncew; is determined in this way, the stochastic variabligsmust be chosen such
that

Xto+s — Weg+s = A181,19+s T+ + Ap&p.to+s>

fors =0,1,..., p—1(this system has a unique solution by Proposition 2.5, (ii)).
If all the roots of the characteristic equation are smaller than unity in modulus,
the solution just obtained is “asymptotically stationary”, this meaning that the term
Ai1g1:+- -+ Apgps, Which is called theéransient in this case, vanishes as— oo,
while the difference between

t—ty

W = Z brus—k
k=0

and the stationary_y._, bsu,_; converges to zero. In the simple example
X =0OXp—1 + Uy,

the backward solution with initial condition;, is

t—to—1

11
X =uUr+au; 1 +---+a« Ugy+1 + X O,

Fora = 1 we find the standard random walk with initial condition
Xp =Up + o+ U1+ X,

in which theu’s contribute to the value ok; with the same weight, irrespective

of whether they have occurred in the recent or in the remote past|offor 1

the termx,, o'~ vanishes asymptotically, and the solution tends to the stationary
Y e au,_; , in which the weight of remote’s dwindles as the powers of. For

|| > 1, as soon as; becomes big in absolute value as compared to the standard
deviation ofu, the variationx;+; — x; = (o — 1)x; + u,4; is dominated by

(e — 1)x; and the pattern af can no longer be distinguished from that B&’.
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CASE 2. Final conditions: Asymptotically stationary solutions.

Assume that no root of the characteristic equation has unit modulus. If the coef-
ficientscy, are determined by (2.43), the particular solutiop is asymptotically
stationary. Moreover, set; = 0 if the root in g, is greater than 1 in modu-
lus. With no loss of generality suppose that the rootgjin are smaller than 1 in
modulus fork > m and greater than 1 in modulus fbr> m. Then the solutions

A1gir + -+ Amgme + wy

are asymptotically stationary. If all the roots of the characteristic equation are
smaller than 1 in modulus we are back in Case 1 atmitial conditions are needed

to determine the solution. Otherwise we nesdnitial conditions. A useful ex-
ercise is the analysis of the autoregressive equatioa a1x;_1 + arx;—» + u;
when one of the roots has modulus smaller that 1 and the other greater.

Summary. The difference equation; = a1x;—1 + -+ + x;—p + u,, whereu;

is a white noise process, has a stationary solution if and only if no root of the
characteristic polynomiat” —a;x,_; —---—a, has unit modulus. Equivalently,

no stationary solution exists if and only if at least one of the roots has unit modulus.
In the no unit-root case the stationary solution is unique and is a moving average of
u;. The coefficients of the moving average decline exponentially fasterjtHan
wherey is any positive number smaller than 1 and greater than (a) the modulus of
all the roots smaller than 1 in modulus and (b) the modulus of all the reciprocals of
the roots greater than 1 in modulus. The moving average is one sided and backward
(forward) if and only if all the roots are smaller than 1 (greater than 1) in modulus.



