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Introduction

These Lecture Notes assume that the reader is already acquainted with the basic
notions on stochastic processes and stationarity. The present text does not pretend
to be self-contained. Rather, I will try to provide a lively presentation, just like in
a lecture course. More precisely, the Notes contain:

1. Motivation of the definitions by detailed discussion of examples and coun-
terexamples.

2. A guide to the proof of the main results. Again, examples and counterexam-
ples will be very often used as substitutes of rigorous proofs, the latter being
left to the readers to work out themselves or to look up in reference texts.

3. Links between results obtained by different tools or approaches.

4. A guide to the mathematical results that are necessary for a rigorous under-
standing of the content of the lectures.

5. References to books and articles.

The subject index of the Lecture Notes is, for the moment,

a. The spectral representation of wide sense stationary processes.

b. Linear filtering.

c. Linear prediction and the Wold representation.

d. Obtaining the Wold representation from the spectral density.

d. Fundamental and non-fundamental representations.



Chapter 1

Definitions

1.1 Stochastic Processes. Kolmogorov’s Theorem

These Lecture Notes mainly deal with discrete-time stochastic processes, and only
occasionally discuss continuous time. Adiscrete-time stochastic processis a fam-
ily of stochastic variables parameterized on the set of integer numbersZ:

x D fxt ; t 2 Zg;

anda set of probability measures

�t1t2:::tn.H / D P
�
.xt1 ; xt2 ; : : : ; xtn/ 2 H

�
;

for any finite set of integers

t1 < t2 < � � � < tn;

whereH is a Borel subset ofRn.
It is important to keep in mind that the “familyfxt ; t 2 Zg” has to be un-

derstood as thefunctionassociating the stochastic variablext with the integert .
Therefore the processesx D fxt ; t 2 Zg, y D fx�t ; t 2 Zg, z D fxt�4 ; t 2 Zg
are different. Although they share the samerange, i.e. the the samesetof stochas-
tic variables, the functions associating a stochastic variable with each integert are
different. For brevity, when no confusion can arise, we use expressions like “the
stochastic processfxt g”, or even “the stochastic processxt ”, instead of the correct
expression “the stochastic processfxt ; t 2 Zg”, or “the stochastic processesx”.

Obviously the measures� must fulfill a consistency condition, that is, given
t1 < t2 < � � � < tn andn � 1 measurable subsets ofR, H1; H2; : : : ; Hn�1,

�t1:::tn.H1 � � � � � Hs � R � HsC1 � � � � � Hn�1/

D �t1 :::ts�1tsC1 :::tn.H1 � � � � � Hn�1/: (1.1)
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4 CHAPTER 1. DEFINITIONS

The following is the most familiar example of a stochastic process.

Example 1.1 At time t a coin is tossed. Outcomes at different times are assumed
to be independent, while the outcomes at timet are equiprobable. The stochastic
variablext is defined as being1 if the outcome at timet is “Head”,0 if “Tail” ( H
andT henceforth). Independence implies that

�t1t2:::tn.H1 � � � � � Hn/ D �.H1/ � � ��.Hn/: (1.2)

Example 1.2 Defineyt D xt�1 C xt C xtC1, wherext is defined in Example
1.1. The sample space ofyt is ˝t�1 � ˝t � ˝tC1. Show that the distributions�
corresponding tot1; : : : ; tn andt1 C k; : : : ; tn C k are equal for any integerk.

Given a stochastic processx we are interested in other stochastic processes that
are defined as functions of the variables ofx, linear functions in particular. Given
x, the process

yt D
mX

kD�m

akxt�k ; (1.3)

with coefficients independent oft , is well known as afinite moving averageof x.
Example 1.2 is a finite moving average, one that has a smoothing effect (this will
be discussed later on, with linear filters). We are also interested in processes that
are implicitly defined as solutions of stochastic difference equations . The simplest
example is the following:

yt D ˛yt�1 C xt ; (1.4)

wherext is a stochastic process. Ifj˛j < 1, a natural candidate for a solution is

y�
t D xt C ˛xt�1 C ˛2xt�2 C � � � : (1.5)

However, thisinfinite moving averagedoes not make sense unless we (1) define
its sample space and (2) specify the kind of convergence in (1.5) (in probability, in
mean square, almost surely).

Let us discuss this point a little further. Assume that in (1.4)xt is the process
defined in Example 1.1. The variablext has sample space

˝t D fHt ; Ttg;

i.e. the set whose elements are “H at timet ”, and “T at timet ”, or, if you prefer
that different coinsCt be used at different times, “H with coin Ct ’ and “T with
coin Ct ”, the probabilityPt being1=2 for both sample points. The infinite sum in



1.1. STOCHASTIC PROCESSES. KOLMOGOROV’S THEOREM 5

(1.5), if existing, would be the limit, fork ! 1, of the sumSkt D xt C ˛xt�1 C
� � � C ˛kxt�k , whose sample space is

˝t � ˝t�1 � � � � � ˝t�k ;

with the product probability (1.2).
We may easily check that the variance of the difference betweenSkt andSht

becomes negligible whenh andk tend to infinity, this being the Cauchy condition
for convergence in mean square. For, independence of the variablesxt implies
that, assumingk > h,

var.Skt � Sht / D var.xt /˛
hC1 1 � ˛2.k�h/

1 � ˛2
;

which converges to zero ash ! 1 (note that var.xt/ is independent oft ). How-
ever, the mean-square Cauchy condition is necessary for convergence in mean
square, not sufficient in general. Moreover, the limit, if existing, should be a
stochastic variable defined on the infinite product

˝t � ˝t�1 � � � � � ˝t�k � � � � ;

and the latter should therefore be endowed with a� -field and a probability measure.
The situation is fairly uncomfortable, the solution of a simple problem like equation
(1.4) requiring the introduction of a new, infinite-dimensional probability space.

This difficulty can be overcome by an elegant re-definition of the processx

in such a way that the stochastic variables are defined all on the same probability
space. This construction is known as the Kolmogorov’s Existence Theorem.

We do not give a proof of the theorem. The following is an illustration based
on the tossing-coin example. Consider the infinite product space

˝Z D � � � � ˝t�1 � ˝t � ˝tC1 � � � � ;

whose elements are the bilateral sequencesfrt ; rt 2 ˝tg. Now, for given� 2 Z
andA� � ˝� , consider

K.�; A�/ D fr 2 ˝Z; r� 2 A� g;

i.e. the set of all bilateral sequences ofH andT such that att D � the outcome
belongs toA� . For example, if� D 1 andA1 D fH1g, thenK.1; A1/ is the set
of all sequences that have anH at t D 1. Then consider the� -field G generated
by all the setsK. Firstly, observe that all finite-dimensional events have their
“copies” in G. For example,H at timest1; : : : ; tm, corresponds to the set of all
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r 2 ˝Z such thatrtj D Htj for j D 1; : : : ; m. However, there are also infinite
dimensional events inG. For example, the countable union of the sets “H at time
t ”, for all t 2 Z, gives the set “H at least once”, whose complement, also inG, is
the singleton “T for all t ”. The probability of the setsK is defined as

P.K.t; At // D Pt .At /:

This law is then extended toG. It is quite obvious that such probability is consistent
with the probability (1.2) on the finite dimensional sets˝t1 � � � � � ˝tn . It is also
consistent with fairly elementary limit results; for example, the probability of the
set “T for all t ” is zero (for that matter, the probability of any elementary event
in ˝Z is zero). In conclusion, we may say that.˝Z;G; P/ is an extension of
the set of all probability spaces̋ t1 � � � � � ˝tn, each endowed with its product
probability.

Lastly, we define copies of the stochastic variablesxt W ˝t ! R. Precisely, let
Zt W ˝Z ! R be defined byZt.r/ D xt.rt /. Given the sequencer , Zt takes on
the value1 if rt isH, 0 otherwise. ThusZt does exactly whatxt does.Zt is called
thet -th coordinate variable. The distribution ofZt is the same as that ofxt , 1 with
probability1=2 and zero with probability1=2. Moreover, the probability measure
of .Zt1 ; : : : ; Ztm/ is the same as that of.xt1 ; : : : ; xtm/. The big difference, the
result of the construction above, is that the variablesZt are all defined onthe same
probability space.Equation (1.4) can be rewritten as

yt D ˛yt�1 C Zt ;

and the tentative solution as

Y �
t D Zt C ˛Zt�1 C ˛2Zt�2 C � � � : (1.6)

Still we need a proof of convergence for the partial sums
Pk

jD0 ˛j Zt�j , but they
are now all defined on the same probability space. A consequence of the results
reported in Section 1.3.9 is that the Cauchy condition is also sufficient in this case,
see Observation 1.10 in particular. The sequenceSkt also converges surely, see
Exercise 1.1 below.

Exercise 1.1 Prove that
Pk

jD0 ˛j Zt�j convergessurely(not onlyalmost surely),

i.e. for anyr 2 ˝Z, so that (1.6) defines the stochastic variableY �
t . Prove thatPk

jD0 ˛j Zt�j also converges toY �
t in mean square.

Exercise 1.2 Discuss the distribution of the stochastic variableY �
t . Show firstly

that it is independent oft . The Matlab program
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function y=autor(ALPHA,OBS,REPL)
a=floor(2*rand(OBS,REPL));
% 2*rand generates a uniform
% stochastic variable in (0 2).
% Taking floor we obtain 0 if the uniform
% lies in (0 1), 1 if it lies in (1 2).
% The matrix a has OBS rows and REPL columns
y=(ALPHA.ˆ(0:(OBS-1)))*a;
% ALPHA.ˆ(0:(OBS-1)) has 1 row and OBS columns,
% so that y has 1 row and REPL columns.

computes, for a given ALPHA, a number REPL of replications ofY �
t by generating

sequences
Zt ; Zt�1 ; : : : ; Zt�OBSC1

(the seriesY �
t is truncated at ALPHAOBS�1Zt�OBSC1). The output y contains the

replications. Draw the histogram by hist(y,100), and comment on the result.

Of course there exist stochastic processes, whose variables are defined directly
on the same probability space, so that the construction sketched above is not nec-
essary.

Example 1.3 Let � be a given real number, anda andb stochastic variables on
the probability space.˝;F ; P/, and let

xt D a cos� t C b sin� t:

What is stochastic inxt does not depend ont . In this case values fora andb are
drawn, so to speak, before the beginning of time. When time “starts going” no
further stochastic events occur. As particular cases we havext D a, theconstant
process, for� D 0, andxt D .�1/t a, for � D � .

Example 1.4 Same as in Example 1.3, but now� also is a stochastic variable.
Same considerations apply.

The ideas illustrated by means of the tossing-coin example possess a rigor-
ous and general formulation in the Kolmogorov’s Existence Theorem. Given a
stochastic processx D fxt ; t 2 Zg, with probability measures�t1t2���tn , fulfilling
the consistency condition (1.1), an “equivalent” process can be constructed on the
setRZ. Precisely, define̋ D RZ andF as the� -field generated by the subsets

K.t1; t2; : : : ; tn; A1; A2; : : : ; An/ D fr 2 RZ; rts 2 As ; s D 1; 2; : : : ; ng;
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where t is any integer andAs a Borel subset ofR; then define the probability
measure on̋ extending�t1t2 ���tn on the wholeF . Lastly, defineyt as thet -th

coordinate variableZt , which is defined byZt .r/ D rt , for all r 2 RZ. (Here the
infinite dimensional space is constructed onRZ, while in the tossing-coin example
we have used the product of the spaces˝t , for t 2 Z; of course the results are
equivalent.)

Thus, with no loss of generality, the definition of a stochastic process can be
restated as follows:

Definition 1.1 A discrete time stochastic process is a family of stochastic vari-
ablesfxt ; t 2 Zg, wherext belongs to the set of all stochastic variables defined
on a probability space.˝;F ; P/.

Remark that the construction of the equivalent processfZt ; t 2 Zg onRZ can
be done irrespectively of the original definition offxt ; t 2 Zg, thus even when
all thex’s are directly defined on the same probability space. The sample points
of RZ are calledsample sequences(in the continuous-time case the termsample
function is used), orrealizationsof the processx. If the set˝, whereon the
variablesxt are defined, coincides withRZ, then the realizations of the processx

and the!’s are the same objects. Note also that realizations belong to a probability
space, so that probability statements apply to sets of realizations. For example, the
realizations of the processes in Examples 1.3 and 1.4 are bounded with probability
1, the realizations of the process in Example 1.1 have an infinite number of 1’s with
probability 1.

Summary. We start with the definition of a stochastic process as a collection of
stochastic variablesxt , each on its own probability space, together with the joint
probability measures of vectors.xt1 � � � xtn/. We show that even in the simple
case of a linear difference equation of order one the solution requires the definition
of a stochastic variable on the infinite-dimensional product of the spaces˝t . The
Kolmogorov’s Theorem proves that there exists a process, equivalent to the process
x, whose variables are all defined on the same probability space. Thus we can use
Definition 1.1. On the Kolmogorov’s Theorem see [4, pp. 506-517], containing a
general and detailed proof, and [7, pp. 9-12].


