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Introduction

These Lecture Notes assume that the reader is already acquainted with the basic
notions on stochastic processes and stationarity. The present text does not pretend
to be self-contained. Rather, | will try to provide a lively presentation, just like in

a lecture course. More precisely, the Notes contain:

1. Motivation of the definitions by detailed discussion of examples and coun-
terexamples.

2. A guide to the proof of the main results. Again, examples and counterexam-
ples will be very often used as substitutes of rigorous proofs, the latter being
left to the readers to work out themselves or to look up in reference texts.

3. Links between results obtained by different tools or approaches.

4. A guide to the mathematical results that are necessary for a rigorous under-
standing of the content of the lectures.

5. References to books and articles.
The subject index of the Lecture Notes is, for the moment,

a. The spectral representation of wide sense stationary processes.

b. Linear filtering.

O

. Linear prediction and the Wold representation.

o

. Obtaining the Wold representation from the spectral density.

o

. Fundamental and non-fundamental representations.



Chapter 1

Definitions

1.1 Stochastic Processes. Kolmogorov's Theorem

These Lecture Notes mainly deal with discrete-time stochastic processes, and only
occasionally discuss continuous time.discrete-time stochastic proceissa fam-
ily of stochastic variables parameterized on the set of integer nunizbers

x ={x;, t €7},
anda set of probability measures
Wiity..ty(H) = P [(th, Xtyyoonsr Xp,) € H]
for any finite set of integers
hH<th< --- <ty

where H is a Borel subset aR”.

It is important to keep in mind that the “familyx;, 1 € Z}” has to be un-
derstood as th&nctionassociating the stochastic variablg with the integer.
Therefore the processes= {x;, t € Z}, y = {x—, t € Z}, z = {Xy—4, t € L}
are different. Although they share the sarange, i.e. the the sansetof stochas-
tic variables, the functions associating a stochastic variable with each intager
different. For brevity, when no confusion can arise, we use expressions like “the
stochastic proceds:; }”, or even “the stochastic procesg’, instead of the correct
expression “the stochastic procdss, ¢ € Z}", or “the stochastic processeas.

Obviously the measures must fulfill a consistency condition, that is, given

fh <ty < --- <ty,andn — 1 measurable subsetsB&f H,, H,, ..., H,_1,
Motyty (Hy X oo X Hy X R X Hg g X «o-x Hy_1)
= II"Ltl---ts—lts+l---tn (Hl Xoeee X Hl’l—l)' (11)
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The following is the most familiar example of a stochastic process.

Example 1.1 Attime ¢ a coin is tossed. Outcomes at different times are assumed
to be independent, while the outcomes at tirrere equiprobable. The stochastic
variablex; is defined as being if the outcome at time is “Head”, 0 if “Tail” ( H
and7 henceforth). Independence implies that

Wtyty..ty (Hy X oo X Hy) = pw(Hy) - - n(Hy). (1.2)

Example 1.2 Definey; = x;—1 + x; + xs+1, Wherex, is defined in Example
1.1. The sample space of is £2,_1 x £2; x £2,41. Show that the distributions
correspondingtey, ..., t, and:; + k, ..., t, + k are equal for any integé.

Given a stochastic procesave are interested in other stochastic processes that
are defined as functions of the variableswflinear functions in particular. Given
x, the process

m
e = Z ApXt—fs (1.3)
k=—m
with coefficients independent afis well known as dinite moving averageof x.
Example 1.2 is a finite moving average, one that has a smoothing effect (this will
be discussed later on, with linear filters). We are also interested in processes that
are implicitly defined as solutions of stochastic difference equations . The simplest
example is the following:
Ve = 0oy + Xg, (1.4)

wherex; is a stochastic process. || < 1, a natural candidate for a solution is
yi=xiax g ol 4. (1.5)

However, thisinfinite moving averageloes not make sense unless we (1) define
its sample space and (2) specify the kind of convergence in (1.5) (in probability, in
mean square, almost surely).

Let us discuss this point a little further. Assume that in (Ix4)s the process
defined in Example 1.1. The variabte has sample space

$2; = {Hs, Ts},

i.e. the set whose elements afig at time:”, and “7 at timez”, or, if you prefer
that different coinsC; be used at different timesH with coin C;’ and “7" with
coin C;”, the probability P; being1/2 for both sample points. The infinite sum in
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(1.5), if existing, would be the limit, fok — oo, of the sumSy; = x; + ax;—1 +
.-+ ok x,_;, whose sample space is

Qt X Qt—l X"'th_k,

with the product probability (1.2).

We may easily check that the variance of the difference betu$gerand Sy,
becomes negligible whel andk tend to infinity, this being the Cauchy condition
for convergence in mean square. For, independence of the variablewplies
that, assuming > #,
par 1 — 02D

var(Sy, — Spe) = var(x,)o a2

which converges to zero ds— oo (note that vafx,) is independent of). How-

ever, the mean-square Cauchy condition is necessary for convergence in mean
square, not sufficient in general. Moreover, the limit, if existing, should be a
stochastic variable defined on the infinite product

82X 241 XX 2p_p X-o+,

and the latter should therefore be endowed wighfield and a probability measure.
The situation is fairly uncomfortable, the solution of a simple problem like equation
(1.4) requiring the introduction of a new, infinite-dimensional probability space.
This difficulty can be overcome by an elegant re-definition of the progess
in such a way that the stochastic variables are defined all on the same probability
space. This construction is known as the Kolmogorov’s Existence Theorem.
We do not give a proof of the theorem. The following is an illustration based
on the tossing-coin example. Consider the infinite product space

QZ:--- X 8241 X 82 X 82441 X ++-

whose elements are the bilateral sequeriegsr; € £2;}. Now, for givent € Z
andA4, C 2., consider

K(t, A7) = {r € %, 1y € A},

i.e. the set of all bilateral sequencesigfand?7 such that at = t the outcome
belongs to4,. For example, it = 1 andA4; = {H;}, thenK(1, 4;) is the set

of all sequences that have &hat: = 1. Then consider the-field G generated
by all the setsK. Firstly, observe that all finite-dimensional events have their
“copies” inG. For example}{ at timestq, ..., t,, corresponds to the set of all
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r e 2% such thatr,j = Hy for j =1, ..., m. However, there are also infinite
dimensional events if. For example, the countable union of the sétsdt time
", forall t € Z, gives the set?{ at least once”, whose complement, als@inis
the singleton 7 for all ¢”. The probability of the setX is defined as

P(K(t, Ar)) = Pi(Ay).

This law is then extended 1@. It is quite obvious that such probability is consistent
with the probability (1.2) on the finite dimensional s€2g, x --- x £2;,. Itis also
consistent with fairly elementary limit results; for example, the probability of the
set “T for all t” is zero (for that matter, the probability of any elementary event
in 2Z is zero). In conclusion, we may say th@®Z, g, P) is an extension of
the set of all probability space®;, x --- x §2,,, each endowed with its product
probability.

Lastly, we define copies of the stochastic variables £2; — R. Precisely, let
Z: : 27 — R be defined byZ,(r) = x,(r;). Given the sequence Z, takes on
the valuel if r, is’H, 0 otherwise. ThusZ, does exactly what,; does.Z, is called
ther-th coordinate variable. The distribution &f; is the same as that af;, 1 with
probability 1/2 and zero with probabilityt /2. Moreover, the probability measure
of (Z;, ..., Z;,) is the same as that ¢k,,, ..., x;,). The big difference, the
result of the construction above, is that the varialdesre all defined othe same
probability spaceEquation (1.4) can be rewritten as

Ve =ay,1 + Zy,
and the tentative solution as
YY=Z +aZi o +a?Zi s+ (1.6)

Still we need a proof of convergence for the partial su@’};o ol Z;_j, but they

are now all defined on the same probability space. A consequence of the results
reported in Section 1.3.9 is that the Cauchy condition is also sufficient in this case,
see Observation 1.10 in particular. The sequefigealso converges surely, see
Exercise 1.1 below.

Exercise 1.1 Prove thath-‘:O o’ Z,_; convergesurely(not onlyalmost surely,

i.e. foranyr € 27, so that (1.6) defines the stochastic variabfe Prove that
Zj.‘:(, o’/ Z,_; also converges t&* in mean square.

Exercise 1.2 Discuss the distribution of the stochastic variabijé. Show firstly
that it is independent of. The Matlab program
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function y=autor ( ALPHA, OBS, REPL)

a=fl oor (2*rand( OBS, REPL)) ;

% 2*rand generates a uniform

% stochastic variable in (0 2).

% Taking floor we obtain O if the uniform
%lies in (0 1), 1if it liesin (1 2).

% The matrix a has OBS rows and REPL col umms
y=(ALPHA. " (0: (OBS-1))) *a;

% ALPHA. " (0: (OBS-1)) has 1 row and OBS col ums,
% so that y has 1 row and REPL col umms.

computes, for a given ALPHA, a number REPL of replication¥ $fby generating
sequences
Zi, Zi—y, .., Zi—0BS+1

(the serieg* is truncated at ALPHARBS™! Z,_gs ). The output y contains the
replications. Draw the histogram by hist(y,100), and comment on the result.

Of course there exist stochastic processes, whose variables are defined directly
on the same probability space, so that the construction sketched above is not nec-
essary.

Example 1.3 Let ¢ be a given real number, arndandb stochastic variables on
the probability spaceés2, F, P), and let

X; = acospt + b singt.

What is stochastic inc; does not depend an In this case values far andb are
drawn, so to speak, before the beginning of time. When time “starts going” no
further stochastic events occur. As particular cases we khave «a, the constant
process, foyp = 0, andx; = (—1)’a, for¢ = =.

Example 1.4 Same as in Example 1.3, but natvalso is a stochastic variable.
Same considerations apply.

The ideas illustrated by means of the tossing-coin example possess a rigor-
ous and general formulation in the Kolmogorov's Existence Theorem. Given a
stochastic process = {x;, t € Z}, with probability measureg,,...,,,, fulfilling
the consistency condition (1.1), an “equivalent” process can be constructed on the
setRZ, Precisely, defing2 = RZ andF as thes-field generated by the subsets

K(ti ty, ... tw A1 Ay, .., Ap) ={r €RE r, € Ay, s =1,2, ..., n},
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wheret is any integer andd; a Borel subset oRR; then define the probability
measure orf2 extendingis,s,.,, ON the wholeF. Lastly, definey, as ther-th
coordinate variableZ;, which is defined byZ,(r) = r;, forall r € RZ, (Here the
infinite dimensional space is constructedﬂ‘@%, while in the tossing-coin example
we have used the product of the spa€gs for ¢ € Z; of course the results are
equivalent.)

Thus, with no loss of generality, the definition of a stochastic process can be
restated as follows:

Definition 1.1 A discrete time stochastic process is a family of stochastic vari-
ables{x;, t € Z}, wherex; belongs to the set of all stochastic variables defined
on a probability spaces2, F, P).

Remark that the construction of the equivalent prodess ¢ € Z} on R% can
be done irrespectively of the original definition of;, ¢t € Z}, thus even when
all the x’'s are directly defined on the same probability space. The sample points
of RZ are calledsample sequencém the continuous-time case the tesample
function is used), orealizationsof the processc. If the set$2, whereon the
variablesx; are defined, coincides wiﬂRZ, then the realizations of the process
and thew’s are the same objects. Note also that realizations belong to a probability
space, so that probability statements apply to sets of realizations. For example, the
realizations of the processes in Examples 1.3 and 1.4 are bounded with probability
1, the realizations of the process in Example 1.1 have an infinite number of 1's with
probability 1.

Summary. We start with the definition of a stochastic process as a collection of
stochastic variables;, each on its own probability space, together with the joint
probability measures of vectols;, --- x;,). We show that even in the simple
case of a linear difference equation of order one the solution requires the definition
of a stochastic variable on the infinite-dimensional product of the sp@¢eJhe
Kolmogorov’s Theorem proves that there exists a process, equivalent to the process
x, whose variables are all defined on the same probability space. Thus we can use
Definition 1.1. On the Kolmogorov’s Theorem see [4, pp. 506-517], containing a
general and detailed proof, and [7, pp. 9-12].



