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Definition of a stochastic process

A stochastic process is (1) a correspondence associating a stochastic variable with

each integer t:

x : t 7→ xt

(2) for any integer s and t1 ≤ t2 ≤ · · · ≤ ts, the probability measure

P(a1 ≤ xt1 ≤ b1, a2 ≤ xt2 ≤ b2, . . . , as ≤ xts ≤ bs)

Saying that a stochastic process is given means that not only the stochastic vari-

ables xt are given, but also the joint probability measure, for all s-tuples

xt1, xt2, . . . , xts

Notation. xt for the stochastic variable associated with t. {xt, t ∈ Z} for the
process, but we also use , for short, xt, meaning the process, instead of {xt, t ∈
Z}.



Definition of a stationary stochastic process

So we have a probability space St = (Ωt,Ft, P) for each t, and the products

Ωt1 × Ωt2 × · · · × Ωts

with their probability measures

P(a1 ≤ xt1 ≤ b1, a2 ≤ xt2 ≤ b2, . . . , as ≤ xts ≤ bs)

Equivalently, with each s and t1 ≤ t2 ≤ · · · ≤ ts we can associate the probability

distribution function

F x
t1,t2,...,ts

(b1, b2, . . . , bs) = P(xt1 ≤ b1, xt2 ≤ b2, . . . , xts ≤ bs)



Definition of a stationary stochastic process

Definition. A stochastic process is strongly stationary if

P(a1 ≤ xt1 ≤ b1, a2 ≤ xt2 ≤ b2, . . . , as ≤ xts ≤ bs)

= P (a1 ≤ xt1+k ≤ b1, a2 ≤ xt2+k ≤ b2, . . . , as ≤ x

for all s, t1 ≤ t2 ≤ · · · ≤ ts, and all integer k. We also say strictly stationary.

Equivalently, using the probability distributions,

F x
t1,t2,...,ts

= F x
τ1,τ2,...,τs

where τj = tj + k.

For example,

the probability that x1 lies between 1 and 2, AND x2 lies between −3 and 3, and

the probability that x11 lies between 1 and 2, AND x12 lies between −3 and 3,

are the same.



Stochastic processes: examples

1. Let St = S = (Ω,F , P). Let

xt = A for all t.

This is an extreme example in which the function x : t 7→ xt is constant. We can

say that xt is a constant stochastic process. This process is of course stationary

2. A slightly modified example is

xt = (−1)tA.

3. At the other extreme, let the variables xt be IID. Stationary. In this case

P(xt1 ∈ I1, xt2 ∈ I2) = P(xt1 ∈ I1)P(xt2 ∈ I2).

4. Non stationary processes are

yt = a + bt + xt, zt = txt,

where xt is IID.



Stochastic processes: examples

5. Another important example of non-stationarity

wt =





xt if t < 0

1 + xt if t ≥ 0

where xt is ID. The mean changes but there is no trend.



Stochastic processes: realizations

Consider the space

RZ = · · · × R × R × R × · · ·
containing all two-sided infinite sequences of real numbers

y = ( · · · y−1 y0 y1 · · · )

The probability

P(a1 ≤ yt1 ≤ b1, a2 ≤ yt2 ≤ b2, . . . , as ≤ yts ≤ bs)

can be interpreted as the probability of the subset B of RZ containing the se-

quences y that pass through [a1 b1] at t1, through [a2 b2] at t2, etc. In other

words, the sequences of B can go wherever they want, provided that they behave

in the prescripted way at t1, t2, . . . , ts.



Stochastic processes: realizations

The space RZ, endowed with the probability measure just defined, is called the

space of realizations, or space of trajectories, of the stochastic process xt.

For example,

1. If xt = A, the constant process, then the realization is a constant sequence

with probability one.

2. If xt = (−1)tA, then with probability one the realization is

(· · · −a a −a a · · · )



Stochastic processes: realizations
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The red line in the lower panel is a realization of xt = A, the black line of xt =

(−1)tA. In the upper panel we have two realizations of xt, which is IID, normal,

with zero mean and unit variance.



Redefining stochastic processes

Starting with the stochastic process {xt, t ∈ Z} we have defined a probability
space on RZ. There is a correspondence between events in the spaces Ωt and

events in RZ. For example, to the event {ω ∈ Ω4, such that x4(ω) = 5} there
corresponds in RZ the event

All trajectories {yt, t ∈ Z} such that y4 = 5

Moreover, to the stochastic variable xτ : Ωτ → R, there corresponds Xτ :

RZ → R which is defined as follows:

Xτ ({yt, t ∈ Z}) = yτ = xτ (any ω ∈ Ωτ such that xτ(ω) = yτ ).

That is: If the trajectory {yt, t ∈ Z} passes through z at t = τ , then the stochastic

variable Xτ takes the value z, which is precisely the value that xτ would take for

any ω of the subset of Ωτ corresponding to {yt, t ∈ Z}.



Redefining stochastic processes

t = 4

−0.5

0.5

The four trajectories belong to the event:

All trajectories that at t = 4 take values between −0.5 and 0.5.



Redefining stochastic processes

t = 4

7

The four trajectories belong to the event:

All trajectories that take value 7 at t = 4.

The variable X4 takes value 7 for all these elementary events of RZ.



Redefining stochastic processes

It is quite obvious that the process {Xt, t ∈ Z} has the same probability distri-
butions as the process {xt, t ∈ Z}, i.e.

FX
t1,t2,...,ts

= F x
t1,t2,...,ts

The advantage of {Xt, t ∈ Z} is that all the variables are defined on the same
probability space RZ.

This is the basis for the following definition of a stochastic process.

Let S = (Ω,F , P) be a probability space and L be the set of all real stochastic

variables defined on S . A function

x : Z → L

is called a stochastic process.

t 7→ xt, xt : Ω → R



The autocovariance function

Suppose that xt is strongly stationary and has finite second moment. Let µ =

E(xt). Then consider

E[(xt − µ)(xt−k − µ)]. (∗)

Since the joint distribution of xt and xt−k depends on k but not on t, then (∗)

depends on k but not on t. We denote it by γk , or γ
x
k if necessary. The function

associating γk with the integer k is called autocovariance function.

It easily seen that γk = γ−k :

γk = E[(xt−µ)(xt−k−µ)] = E[(xt+k−µ)(xt−µ)] = E[(xt−µ)(xt−(−k)−µ)] = γ−k

Moreover |γk| ≤ γ0 = var(xt).



The autocovariance function
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In the figure we have the autocovariance function (first 20 values) of the constant

process, blue circles, the process xt = (−1)tA, red asterisks, the IID process,

black triangles. All processes have unit variance.



Weakly stationary processes

Suppose that xt is a stationary process with finite second moments, that (i) E(xt)

is independent of t, call it µ, and

E[(xt − µ)(xt−k − µ)] (∗)

is independent of t. Then we say that xt is weakly stationary. We denote (∗) by

γk.

If xt is strongly stationary and has finite second moments, then xt is weakly sta-

tionary.

Of course a weakly stationary process is not necessarily strongly stationary. As an

example, let γk = 0 for k 6= 0, γ0 = var(xt) = 1. Moreover, assume that xt is

normal for t 6= 0 and uniform for t = 0.

If xt is weakly stationary and normal then it is strongly stationary.

Unless explicitly stated, stationary processes will be weakly stationary.



White noise

We say that the stationary process xt is a white noise if E(xt) = 0 and

γk = 0 for k 6= 0

The IID process is of course a white noise.

The autocovariance function of a white noise has only one non-zero value.



Moving averages of a white noise

Start with a white noise process ut. The process

xt =
m∑

j=−m
ajut−j

is called a moving average of ut.

The process xt is stationary. For, the mean of xt is zero, obvious. Moreover, to

compute the autocovariances,

xt = · · · + a1ut−1 + a0ut + a−1ut+1 + · · ·
xt−1 = · · · + a0ut−1 + a−1ut + a−2ut+1 + · · ·

We have:

γx
k = σ2

u
∑m

j=−m+k ajaj−k, in particular γx
0 = σ2

u
∑m

j=−m a2
j



Moving averages of a white noise

For the moving average

xt =
m∑

j=−m
ajut−j,

we have

γx
s = 0 for s > 2m + 1

Example: xt = ut + 2ut−1 − 6ut−2:

γx
0 = 41σ2

u, γx
1 = −10σ2

u, γx
2 = −6σ2

u, γx
s = 0 for s > 2

Note that the autovariance function of the process {xt, t ∈ Z} and that of

{xt−h, t ∈ Z} are identical. For example yt = ut+1+2ut−6ut−1 and xt = yt−1.



Moving average of a general process

We can construct a moving average with any process xt:

yt =
m∑

j=−m
ajxt−j.

If xt is stationary then yt is stationary. For, E(yt) = µ
∑

aj . Moreover:

E(yty
′
t−k) = E




(am am−1 · · · a−m+1 a−m)




xt−m

xt−m+1
...

xt+m−1

xt+m




(xt−m−k xt−m+1−k · · · x

= a




γx
k γx

k−1 · · · γx
k−2m

γx
k+1 γx

k · · · γx
k−2m+1

. . .

γx
k+2m γx

k+2m−1 · · · γx
k




a′



The lag operator

If xt is a stochastic process, define the lag operator, denoted by L, by

Lxt = xt−1.

Moreover, for k > 1,

Lkxt = L(Lk−1xt), L0 = 1 where 1 here means the identity operator: 1xt = xt.

Lastly Fxt = L−1xt = xt+1.

We also define functions of L,

a(L) = a−mL−m + · · · + a−1L
−1 + a0 + a1L + · · · + amLm

= a−mFm + · · · + a−1F + a0 + a1L + · · · + amLm

Moving averages can be rewritten as:

xt = a(L)ut = a−mut+m + · · ·+ a−1ut+1 + a0ut + a1ut−1 + · · ·+ amut−m.



The lag operator

Examples:

xt = ut+2ut−1−6ut−2 = (1+2L−6L2)ut, yt = ut+1+2ut−6ut−1 = (F+2−6L)u

We have seen that the autocovariance function of xt and Lkxt are equal for all k.

We have

a(L)[b(L)ut] = [a(L)b(L)]ut,

where a(L)b(L) is obtained by the ordinary algebraic rules. Example:

(F + 2 − 6L)[(1 + 5L2)ut] = [F + 2 − L + 10L2 − 30L3]ut.

Check this result.



Infinite moving averages of a white noise

We can in principle consider a moving average of a white noise with an infinite

number of terms:

xt =
∞∑

j=−∞
ajut−j = · · · + amut−m + · · · + a0ut + · · · + a−mut+m + · · ·

provided that
∞∑

j=−∞
a2

j < ∞. (∗)

Condition (∗) ensures that xt has finite variance and covariances:

γx
0 = σ2

u

∞∑

j=−∞
a2

j, γx
k = σx

0

∞∑

j=−∞
ajaj−k

(Do you remember the Cauchy-Schwartz inequality? |∑
cjdj| ≤

√∑
c2
j

√∑
d2

j . )



Infinite moving averages of a white noise

To see why infinite moving averages are important consider the difference equation:

zt = αzt−1 + ut,

where ut is a white noise, α < 1, and zt is an unknown stochastic process.

Suppose that xt is a solution. Then:

xt = αxt−1+ut = α(αxt−2+ut−1)+ut = [ut+αut−1]+α2xt−2 = [ut+αut−1+α2ut

Thus an obvious candidate solution is

xt = ut + αut−1 + α2ut−2 + · · · =
∞∑

j=0
αjut−j

And it works

ut +αxt−1 = ut +α(ut−1 +αut−2 + · · · ) = ut +αut−1 +α2ut−2 + · · · = xt



Infinite moving averages of a white noise

Note that other solutions exist. If A is any stochastic variable, and yt = xt +Aαt,

then

ut + αyt−1 = ut + α(xt−1 + Aαt−1) = [ut + αxt−1] + Aαt = xt + Aαt = yt

and viceversa, if yt is a solution then yt = xt + Bαt for some stochastic variable

B.

Thus xt is the only stationary solution.

In conclusion, infinite moving averages arise as solutions of

elementary and sensible problems.



Infinite moving averages of a white noise

Infinite moving averages of a white noise are a large class of stochastic processes.

We will see that every stationary stochastic process can be decomposed into an

infinite moving average of a white noise plus a “deterministic” component.

A very important property of infinite moving averages of a white noise is that the

autocovariance function vanishes when the lag tends to infinity. Precisely, if xt =
∑

ahut−h,

lim
k→∞

γx
k = 0

This can be easily grasped: γx
k =

∑∞
h=−∞ ahah−kσ

2
u. The formula can be “seen”

as obtained by displaying the array aj on top of the same array shifted to the left by

k integer steps, then taking the products “vertically” and summing. For example,

for k = 1
· · · a1 a0 a−1 · · ·
· · · a0 a−1 a−2 · · ·
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Infinite moving averages. The squares on the blue line are the coefficients aj .

The graph has a belly and two tails, a stylization of the fact that the coefficients

must decline to zero as j tends to infinity (they must be square summable). The

green and the red graphs are obtained by shifting the blue line back of 5 and 20

positions respectively. It is apparent that increasing the lag the belly of the blue

graph corresponds more and more to the smaller and smaller values of the tail of

the shifted graph, while the belly of the shifted graph corresponds to the tail of the

blue graph.



Infinite moving averages of a white noise
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Now we know that there exist processes that are not moving averages of a white

noise. The autocovariance function of the processes xt = A and xt = (−1)tA

does not decline: see the blue and red lines above.



ARMA processes

We have discussed the stationary solution of

zt = αzt−1 + ut.

Rewrite it as zt − αzt−1 = ut and then as

(1 − αL)zt = ut

We call this equation an autoregressive equation of order one, and the station-

ary solution an autoregressive process of order one, or an AR(1). An obvious

generalization is

zt = α1zt−1 + · · · + αpzt−p + ut, that is (1 − α1L − · · · − αpL
p)zt = ut

an autoregressive equation of order p.



ARMA processes

We want to solve the equation

(1 − α1L − · · · − αpL
p)zt = ut.

This means looking for a moving average of ut that solves the equation.

For p = 1 we found that if |α| < 1 the solution is

xt = ut + αut−1 + α2ut−2 + · · ·

We can define the inverse of 1 − αL:

1

1 − αL
= (1 − αL)−1 = 1 + αL + α2L2 + · · ·

and write

xt = (1 − αL)−1ut = (1 + αL + α2L2 + · · · )ut



ARMA processes

The expansion
1

1 − αL
= 1 + αL + αL2 + · · · (∗)

closely resembles the Taylor expansion

1

1 − x
= 1 + x + x2 + · · ·

Both must be handled with extreme care. If |x| ≥ 1 the Taylor series does not

converge. In the same way, if |α| ≥ 1 application of the operator (∗) to ut does

not produce a finite-variance stochastic variable.

However, for |α| > 1 the operator 1 − αL has an inverse with an interesting

expansion:

1

1 − αL
=

F

F − α
= −α−1F

1

1 − α−1F
= −α−1F (1+α−1F+α−2F 2+· · · )

where F = L−1.



ARMA processes

However, for |α| > 1 the operator 1 − αL has an inverse with an interesting

expansion:

1

1 − αL
=

F

F − α
= −α−1F

1

1 − α−1F
= −α−1F (1+α−1F+α−2F 2+· · · )

where F = L−1.

This can be used to solve the equation

zt = 2zt−1 + ut, that is (1 − 2L)zt = ut

The solution is

xt = −
1

2
(1 +

1

2
F +

1

22
L2 + · · · )ut = −

1

2
ut+1 −

1

22
ut+2 + · · ·

thus a moving average of future values of ut.



ARMA processes

This can be used to solve the equation

zt = 2zt−1 + ut, that is (1 − 2L)zt = ut

The solution is

xt = −
1

2
(1 +

1

2
F +

1

22
L2 + · · · )ut = −

1

2
ut+1 −

1

22
ut+2 + · · ·

thus a moving average of future values of ut.

The same result can be seen immediately if

zt = 2zt−1 + ut is rewritten as zt−1 = 1
2zt − 1

2
ut,

that is

zt =
1

2
zt+1 + vt,

where vt = −1
2
ut+1.



ARMA processes

Thus the equation (1 − αL)zt = ut has a stationary solution which is a moving

average of ut, in the past if |α| < 1,

xt = ut + αut−1 + α2ut−2 + · · ·

in the future if |α| > 1,

xt = −α−1ut+1 − α−2
t+2 − · · ·

Only when |α| = 1 there is no stationary solution. More precisely, the equations

zt = zt−1 + ut, zt = −zt−1 + ut

have no stationary solutions unless ut = 0. In that case the solutions are xt = A

and xt = (−1)tA, respectively.



ARMA processes

Let us go back to the autoregressive equation of order p:

(1 − α1L − · · · − αpL
p)zt = ut

We solve it by factoring the polynomial into first order factors. Precisely:

1 − α1L− α2L
2 − · · · − αpL

p = −αp(L − γ1)(L − γ2) · · · (L − γp)

= [−αp(−1)pγ1γ2 · · · γp](1 − δ1L)(1 − δ2L) · · · (1 − δpL) = (1 − δ1L

where δj = 1/γj .

Thus the autoregressive equation can be rewritten as

(1 − δ1L)(1 − δ2L) · · · (1 − δpL)zt = ut

and the solution is obtained by inverting the polynomials 1−δjL one after another.



ARMA processes

Thus the autoregressive equation can be rewritten as

(1 − δ1L)(1 − δ2L) · · · (1 − δpL)zt = ut

and the solution is obtained by inverting the polynomials 1−δjL one after another.

More precisely, if the roots of the polynomial 1−α1L−· · ·−αpL
p, that is the γ ’s,

are greater than 1 in modulus, that is if |δj| < 1, then for the stationary solution

we have

xt = (1 − δ1L)−1(1 − δ2L)−1 · · · (1 − δpL)−1ut

= (1 + δ1L + δ2
1L

2 + · · · ) · · · (1 + δpL + δ2
pL

2 + · · · )ut

=
[
1 + A1L + A2L

2 + · · ·
]
ut

= ut + A1ut−1 + A2ut−2 + · · ·

where

Ak =
∑

k1+k2+···+kp=k
δk1
1 δk2

2 · · · δkp
p

In particular, A1 = δ1 + δ2 + · · · + δp.



ARMA processes

About the roots of the autoregressive polynomial, let us insist that that the root of

1 − αL is 1/α. Thus, by requiring that the root is greater than 1 in modulus we

require that α is smaller than 1 in modulus.



ARMA processes

Example: (1 − α1L − α2L
2)zt = ut. The solution is

xt = ut+[δ1+δ2]ut−1+[δ2
1 +δ1δ2+δ2

2]ut−2+[δ3
1 +δ2

1δ2+δ1δ
2
2 +δ3

2]ut−3+· · ·

390

0

1

The figure shows the coefficients corresponding to δ1 = 0.9, δ2 = 0.7, blue line,

δ1 = −0.9, δ2 = 0.7, green line.



ARMA processes

Example: (1 − α1L − α2L
2)zt = ut. The solution is

xt = ut+[δ1+δ2]ut−1+[δ2
1 +δ1δ2+δ2

2]ut−2+[δ3
1 +δ2

1δ2+δ1δ
2
2 +δ3

2]ut−3+· · ·
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The blue line and green show the coefficients corresponding to the complex conju-

gate solutions δ1 = 0.9(cos 2π
τ

+i sin 2π
τ

), δ2 = δ̄1, for τ = 24 and 12 respectively.

The coefficients are real, as expected (see also the formula above).



ARMA processes

Another technique to obtain the moving average corresponding to the autoregres-

sive equation

(1 − α1L − α2L
2)zt = ut

is the following. Suppose that xt = (1 + a1L + a2L
2 + · · · )ut is the solution.

Then

(1 − α1L − α2L
2)(1 + a1L + a2L

2 + · · · )ut = ut

i.e.

[
1 + (a1 − α1)L + (a2 − α1a1 − α2)L

2 + · · · + (ak − α1ak−1 − α2ak−2)L
k + · · · )

Since ut is a white noise all the coefficients, apart the first, must be zero. Thus

we find the difference equation

ak−α1ak−1−α2ak−2 = 0, for k ≥ 2, with initial conditions a1 = α1 and a2 = α1a1



ARMA processes

Lastly, examining again the formula

xt = ut + [δ1 + δ2]ut−1 + [δ2
1 + δ1δ2 + δ2

2]ut−2 + [δ3
1 + δ2

1δ2 + δ1δ
2
2 + δ3

2 ]ut−3 + ·
= ut + a1ut−1 + a2ut−2 + · · ·

we see that if, say, |δ1| ≥ |δ2|, then the k-th coefficient of the moving average, in

modulus, is smaller or equal to k|δ1|k. Thus the coefficients ak tend to zero faster

that any geometric sequence ρk with |δ1| < ρ < 1. We say that the coefficients

ak decline geometrically with rate |δ1|, which is the modulus of the “worst” δ, that
is the one that is closer to 1.



ARMA processes

In general, the coefficients of the moving average

xt = ut + A1ut−1 + A2ut−2 + · · ·

solution of the autoregressive equation

(1 − α1L − · · · − αpL
p)zt = ut

tend to zero geometrically at rate |δ1|, where, with no loss of generality, |δ1| ≥ |δs|,
this meaning that δ1 is the worst of the δ’s.



ARMA processes

The stationary solution of

(1 − α1L − · · · − αpL
p)zt = ut,

under the assumption that all the roots of 1−α1L−· · ·−αpL
p are greater than

1 in modulus, is called an AR(p) process. An AR(p) process has a moving average

representation in the contemporaneous and past values of ut:

xt = ut + A1ut−1 + A2ut−2 + · · ·

If some of the roots γj of 1 − α1L − · · · − αpL
p
are smaller than 1 then

1 − α1L − · · · − αpL
p = (1 − γ1L)(1 − γ2L) · · · (1 − γpL)

can still be inverted but not in L alone, so that xt in this case will be a two-sided

moving average of ut.



ARMA processes

For example, suppose that 1−α1L−α2L
2 = (1−δ1L)(1−δ2L), with |δ1| < 1

but |δ2| > 1. Then

(1− δ1L)−1(1− δ2L)−1 = −(1 + δ1L + δ2
1L

2 + · · · )(δ−1
2 F + δ−2

2 F−2 + · · · )

In this case

xt = · · · + A1ut−1 + A0ut + A−1ut+1 + · · ·
with

A0 = −δ1δ
−1
2 − δ2

1δ
−2
2 − · · ·

A1 = −δ2
1δ

−1
2 − δ3

1δ
−2
2 − · · ·

A−1 = −δ−1
2 − δ1δ

−2
2 − · · ·

...

(Check that the coefficients Ak and A−k tend to zero geometrically for k → +∞.)



ARMA processes

But if some of the roots γ has unit modulus, in that case we say that the autore-

gressive polynomial has unit roots, then the autoregressive equation

(1 − α1L − · · · − αpL
p)zt = ut,

has no stationary solution. (Unit roots will be discussed later on.)

We assume that the autoregressive polynomial has no root inside or on the unit

circle, i.e. that |γj| > 1 for all j or that |δj| < 1 for all j. In this case we say that

the stability, or stationarity condition is fulfilled. (But we know that roots inside the

unit circle do not imply that a stationary solution does not exist, they only produce

moving average containing future values of ut. It is only with roots of unit modulus

that stationary solutions do not exist.)
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ARMA processes. Plot of ut, normally distributed white noise.
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ARMA processes. Plot of xt = (1 − 0.9L)−1ut.
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ARMA processes. Plot of xt = (1 + 0.9L)−1ut. The equation is

zt = −0.9zt−1 + ut.



ARMA processes

The autocovariance function of an autoregressive process can be obtained very

easily. Assume that p = 2:

xt = α1xt−1 + α2xt−2 + ut (∗)

We know that

xt = ut + A1ut−1 + A2ut−2 + · · · (∗∗)

Multiplying both sides of (∗) by xt−k = ut−k + A1ut−k−1 + · · · , for k ≥ 1, we

obtain

γk = α1γk−1 + α2γk−2

(Yule-Walker equations) same as (∗) apart from ut.



ARMA processes

The first two equations, for k = 1 and k = 2, are

γ1 = α1γ0 + α2γ−1 = α1γ0 + α2γ1

γ2 = α1γ1 + α2γ0

(recall that γ−1 = γ1). Multiplying by xt, and using (∗∗), we get γ0 = α1γ1 +

α2γ2 + σ2
u. Thus

γ0 = α1γ1 + α2γ2 + σ2
u

γ1 = α1γ0 + α2γ1

γ2 = α1γ1 + α2γ0

This system determines γ0, γ1 and γ2, then γ3 = α1γ2 + α2γ1, etc.



ARMA processes

For p = 1, zt = αzt−1 + ut the equation is γk = αγk−1 for k ≥ 0. Using the

same trick as before we get

γ0 = αγ1 + σ2
u

γ1 = αγ0

γk = αkγ0

This gives

γ0 =
σ2

u

1 − α2
, γk = αk σ2

u

1 − α2



ARMA processes

For p = 1:

γ0 =
σ2

u

1 − α2
, γk = αk σ2

u

1 − α2

0
−1

0

1

Autocovariance function for AR(1) processes: α = 0.9, blue line and α = −0.9,

green line.



ARMA processes

0

0

Autocovariance function for AR(2) processes, with roots 0.9 and 0.7, blue line,

−0.9 and 0.7, green line:

xt = 1.6xt−1 − .63xt−2 + ut, xt = −0.2xt−1 + 0.63xt−2 + ut,

respectively. (Compare with the graph of the moving-average coefficients.)



ARMA processes

0

0

Autocovariance function for AR(2) processes, with roots 0.9
(
cos 2π

τ
+ i sin 2π

τ

)

and its conjugate, for τ = 24, blue line, τ = 12, green line:

xt = 1.74xt−1 − .81xt−2 + ut, xt = 1.55xt−1 − .81xt−2 + ut,

respectively. (Compare with the graph of the moving-average coefficients.)



ARMA processes

The stationary solution of

(1 − α1L − · · · − αpL
p)zt = (1 + β1L + · · · + βqL

q)ut, (∗)

which is an autoregressive-moving-average equation, is called an ARMA(p,q).

Let a(L) = 1 − α1L − · · · − αpL
p and b(L) = 1 + β1L + · · · + βqL

q. The

solution of (∗) is

xt = a(L)−1b(L)ut

1. Assuming that the roots of a(L) lie outside of the unit circle,

a(L)−1b(L) = a(L)−1 + β1a(L)−1L + · · · + βqa(L)−1Lq, (∗∗)

which clearly shows that a(L)−1b(L)ut is a one-sided moving average of ut.

2. (∗∗) also shows that the coefficients of a(L)−1b(L) decline geometrically at

rate |δ1|.



ARMA processes

Note that the roots of the polynomial 1 + β1L + · · · + βqL
q play no role for the

moment. If the roots of a(L) lie outside of the unit circle, then the equation

a(L)zt = b(L)ut

has the solution a(L)−1b(L), which is a one-sided moving average, irrespective

of whether the roots of b(L) are outside, on or inside the unit circle.

For example,

xt = (1 + 0.5L)ut, and yt = (1 + 2L)ut

are “equally” stationary. However, for reasons that will be discussed in the sequel

we usually assume that ARMA(p,q) processes fulfill the invertibility condition, i.e.

that the roots of b(L) lie outside of the unit circle.



ARMA processes

In conclusion, the stationary solution of

a(L)zt = b(L)ut,

where a(L) and b(L) fulfill the stability and the invertibility condition respectively,

meaning that their roots lie outside of the unit circle, is called an ARMA(p,q).



Long-memory processes

Now consider the moving average

xt = ut +
1

2
ut−1 +

1

3
ut−2 + · · ·

Is this moving average admissible? The answer is yes, because the sum of the

squared coefficients

1 +
1

22
+

1

32
+ · · ·

converges, although the sum of the coefficients

1 +
1

2
+

1

3
+ · · ·

does not.



Long-memory processes

This moving average cannot be produced as the stationary solution of an ARMA

equation. For, we know that solution of ARMA equations have coefficients that

converge to zero geometrically, as fast as |δ1|k. In our case, the coefficients of
the moving average converge to zero arithmetically (this is the term used), and are

not even summable.

Remember that we already have examples of stationary processes that are not

moving averages of a white noise. Now we have an example of a process that is

a moving average of a white noise but is not an ARMA.

Given the moving average

xt =
∞∑

j=1
ajut−j,

if the coefficients aj tend to zero geometrically, like in the ARMA case, we say that

the process has short memory. If the series
∑

a2
j is summable but

∑ |aj| is not
summable, like in the example above, we say that the process has long memory.
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